ОТ РЕДАКТОРОВ

УДК 577.322.2+577.322.5

Итоги пятой Российской международной конференции по криоэлектронной микроскопии (RICCEM-2025)

Т.Б. Станишнева-Коновалова¹ , И.А. Ярошевич², М.П. Кирпичников¹, О.С. Соколова^{1,*}

¹Кафедра биоинженерии, биологический факультет, Московский государственный университет имени М.В. Ломоносова, Россия, 119234, г. Москва, Ленинские горы, д. 1, стр. 73;
 ²Кафедра биофизики, биологический факультет, Московский государственный университет имени М.В. Ломоносова, Россия, 119234, г. Москва, Ленинские горы, д. 1, стр. 24
 *e-mail: sokolova@mail.bio.msu.ru

С 8 по 11 июня 2025 г. на биологическом факультете МГУ имени М.В. Ломоносова прошла 5-я Российская международная конференция «Криоэлектронная микроскопия 2025: достижения и перспективы» (RICCEM-2025). Более 300 исследователей из 11 стран приняли в ней участие в онлайн- и оффлайн-формате. В этой статье кратко обсуждается содержание статей специального выпуска журнала «Вестник Московского университета. Серия 16. Биология», опубликованного по итогам конференции.

Ключевые слова: криоэлектронная микроскопия, крио ЭМ, структурная биология, структуры макромолекул, конференция, *RICCEM*

DOI: 10.55959/MSU0137-0952-16-80-3S-1

Конференция «Криоэлектронная микроскопия 2025: достижения и перспективы» проводится в МГУ уже в 5-й раз. В этом году ее организаторами были биологический факультет МГУ, Междисциплинарная научно-образовательная «Молекулярные технологии живых систем и синтетическая биология», Московский физико-технический институт, Российская Академия наук. Среди докладчиков особо хочется отметить лекцию Нобелевского лауреата по химии 2017 г., профессора Ричарда Хендерсона. С устными докладами в очном формате выступили проф. Шиксин Йе-Леманн из Университета Париж-Сакле (Франция), проф. Александр Соболевский из Медицинского центра Ирвинга Колумбийского университета (США), д-р. Константин Усачев из Казанского федерального университета (Россия), д-р Элиас Ньето Сарагоса из Национального автономного университета Мексики (Мексика) и многие другие (рисунок).

В данном спецвыпуске опубликованы 17 обзорных и экспериментальных работ, представленных на конференции в виде устных или постерных докладов. Открывает спецвыпуск обзорная статья Федорова и соавт., посвященная применению метода криоэлектронной микроскопии (криоЭМ) для изучения микротрубочек [1]. Обсуждается прогресс в изучении гибких элементов микротрубочек с помощью криоЭМ и томографии, а также роль и потенциал методов компьютерного моделирования этих структур. В обзорной статье Алиевой и соавт. обсуждается сочетание методов микроскопии сверхвысокого разрешения и криоэлектронной томографии для идентификации и подробной характеристики участков связывания виментина с митохондриями [2].

В оригинальных исследованиях этого спецвыпуска метод криоЭМ дополняется различными методами для изучения макромолекулярных комплексов и объектов биологического происхождения. Одним из таких объектов являются внеклеточные везикулы, которые являются как способом межклеточной коммуникации, так и перспективными средствами для адресной доставки лекарств. В статье Паршиной и соавт. при помощи сканирующей электронной микроскопии и спектроскопии комбинационного рассеяния сравниваются внеклеточные везикулы эритроцитарного происхождения, полученные разными методами [3]. В статье Григорьевой и соавт. приводится протокол для выделения мембранно-ассоциированных везикул, показывающий большую эффективность по сравнению с другими опробованными протоколами, что подтверждается методом просвечивающей электронной микроскопии (ПЭМ) [4]. Трифонова и соавт. в своем исследовании описали

© Станишнева-Коновалова Т.Б., Ярошевич И.А., Кирпичников М.П., Соколова О.С., 2025

морфологию малых внеклеточных везикул, выделенных из желудочного сока пациентов с аденокарциномой желудка, а также здоровых доноров. Описание проводилось с применением созданной авторами компьютерной программы Veronica для анализа объектов на изображениях, полученных методом криоэлектронной микроскопии [5].

В работе Корабейниковой и соавт. изучается модифицированный калиевый канал КСа3.1, в котором к N- либо к С-концу его α-субъединицы присоединен флуоресцентный белок. При помощи конфокальной микроскопии проанализировано распределение таких химерных каналов в плазматической мембране и сделан вывод о том, что модификация С-конца предпочтительнее. Кроме того, в этой работе был создан флуоресцентный лиганд, состоящий из пептидного блокатора и зеленого флуоресцентного белка, который может использоваться для визуализации каналов в клетках [6].

Несколько оригинальных работ посвящены структурным исследованиям нуклеосом и их комплексов. Любителев и соавт. проводили сборку полинуклеосом на плазмиде и визуализировали полученные конструкции при помощи атомно-силовой микроскопии (АСМ) [7]. Осина и соавт. разработали протокол для сборки элонгационного комплекса с положением активного центра РНК-полимеразы в позиции +39 от входа в нуклеосому (ЭК+39). Образование целевых комплексов подтверждалось методами электрофореза и электронной микроскопии с негатив-

ным контрастированием образцов. Ожидается, что разработанные протоколы будут использованы для изучения ЭК+39 методом криоЭМ [8]. Кошкина и соавт. использовали метод электрофоретического сдвига подвижности (EMSA, Electrophoretic Mobility Shift Assay) с флуоресцентно-меченой ДНК для изучения кооперативного и конкурентного связывания белков р53 и PARP1 с мононуклеосомами. Авторы показали, что порядок добавления белков определяет характер их взаимодействия с нуклеосомой [9].

В работе Лобановой и соавт. была создана платформа для флуоресцентной микроскопии, позволяющая визуализировать динамику взаимодействия лигандов с His-мечеными белками, связывающимися с Ni-NTA-агарозными шариками. Платформа применялась для исследования взаимодействия фактора репарации ДНК PARP2 с нуклеосомой, модулируемого клиническими ингибиторами (талазопарибом, велипарибом) [10]. Волкова и соавт. в своей статье представили новый протокол получения очищенного фактора репарации ДНК PARP3, являющийся более эффективным, чем ранее опубликованные методики [11].

В другом оригинальном исследовании проводился анализ структур каротиноид-содержащих белков, депонированных в базу Protein Data Bank. Основываясь на имеющихся данных, Сурков и соавт. применили метод машинного обучения для создания и тестирования модели, прогнозирующей каротиноид-связывающую активность по первичной структуре белка [12].

Рисунок. Групповая фотография на конференции «RICCEM-2025»

Завершают спецвыпуск несколько кратких сообщений. Кравченко и соавт. получили структуру преинициаторного рибосомного комплекса из экстрактов зародышей пшеницы со средним разрешением 3 Å. Это первая структура инициаторного комплекса растений, и результаты работы указывают на ее отличия от комплексов из клеток млекопитающих [13]. Моисеенко и соавт. впервые представили криоЭМ-структуру осевой фибриллы gp56 из адсорбционного аппарата Stx-конвертирующего фага phi24B [14]. Кордюкова и соавт. применяли методы ПЭМ, криоЭМ и АСМ для изучения температурочувствительного мутанта SARS-CoV-2 в сравнении с родительским штаммом [15]. Волох

и соавт. методом ПЭМ сравнили мутантный и нативный комплекс FACT, показав различия в их способности разворачивать нуклеосомы [16]. Казаков и соавт. исследовали возможности применения криоэлектронной томографии для изучения архитектуры хроматина [17].

Конференция проводилась при финансовой поддержке Московского государственного университета, спонсорами также выступили компании «Техноинфо», «Мелитэк», «Bioinnlabs», «Лабтех», «Віосад» и «Микротехпро». Спонсором конкурса лучших презентаций среди студентов и аспирантов выступила компания «Хеликон». Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Федоров В.А., Холина Е.Г., Гудимчук Н.Б., Коваленко И.Б. Изучение гибких элементов структуры микротрубочек с помощью криоэлектронной микроскопии и молекулярного моделирования: миссия выполнима? Вести. Моск. ун-та. Сер. 16. Биол. 2025;80(3S):9—14.
- 2. Алиева И.Б, Шахов А.С., Чуркина А.С., Минин А.А. Преодоление «разрыва в разрешении»: сочетание микроскопии сверхвысокого разрешения и криоэлектронной томографии для идентификации участков связывания митохондрий с виментином. Вести. Моск. ун-та. Сер. 16. Биол. 2025;80(3S):15—22.
- 3. Паршина Е.Ю., Фролова Л.С., Максимов Г.В. Морфология эритроцитов указывает на различие механизмов формирования внеклеточных везикул эритроцитарного происхождения. *Вести. Моск. ун-та. Сер. 16. Биол.* 2025;80(3S):23—30.
- 4. Григорьева О.А., Басалова Н.А., Виговский М.А., Дьячкова У.Д., Багров Д.В., Соколова О.С., Ефименко А.Ю. Мембранно-ассоциированные везикулы: подходы к выделению и характеризации. *Вести. Моск. ун-та. Сер. 16. Биол.* 2025;80(3S):31—37.
- 5. Трифонова Т.С., Моисеенко А.В., Скрябин Г.О., Имаралиев О.Т., Чевкина Е.М., Карасев И.А., Ефименко А.Ю., Трифонов С.И., Багров Д.В., Соколова О.С. Криоэлектронная микроскопия демонстрирует полиморфизм малых внеклеточных везикул. Вести. Моск. ун-та. Сер. 16. Биол. 2025;80(3S):38—45.
- 6. Корабейникова В.Н., Феофанов А.В., Некрасова О.В. N- или С-концевое положение флуоресцентного белка mKate2 в составе химеры mKate2-KCa3.1 влияет на мембранную экспрессию канала. Вести. Моск. ун-та. Сер. 16. Биол. 2025;80(3S):46—51.
- 7. Любителев А.В., Багров Д.В., Гераськина О.В., Студитский В.М. Визуализация искусственных полинуклеосомных конструкций методом атомно-силовой микроскопии. *Вестн. Моск. ун-та. Сер. 16. Биол.* 2025;80(3S):52–58.
- 8. Осина Е.В., Моисеенко А.В., Коровина А.Н., Герасимова Н.С., Волох О.И., Студитский В.М., Станишнева-Коновалова Т.Б. Пробоподготовка элонгационного комплекса +39 для криоэлектронной микроскопии. Вести. Моск. ун-та. Сер. 16. Биол. 2025;80(3S):59—66.
- 9. Кошкина Д.О., Малюченко Н.В., Новичкова А.М., Феофанов А.В., Студитский В.М. PARP1-зависимые из-

- менения нуклеосомной организации: возможное участие p53. *Вестн. Моск. ун-та. Сер. 16. Биол.* 2025;80(3S):67–72.
- 10. Лобанова А.А., Саулина А.А., Гераськина О.В., Кошкина Д.О., Малюченко Н.В., Феофанов А.В., Студитский В.М. Оценка связывания ингибиторов PARP в режиме реального времени на основе Ni-NTA-агарозных шариков. Вести. Моск. ун-та. Сер. 16. Биол. 2025;80(3S):73—80.
- 11. Волкова Е.А., Коровина А.Н., Малюченко Н.В., Студитский В.М. Оптимизация получения рекомбинантной поли(АДФ-рибоза) полимеразы 3 человека. Вестн. Моск. ун-та. Сер. 16. Биол. 2025;80(3S):81–86.
- 12. Сурков М.М., Литовец А.Ю., Мамчур А.А., Станишнева-Коновалова Т.Б., Ярошевич И.А. Структурные особенности каротиноид-связывающих белков. Вести. Моск. ун-та. Сер. 16. Биол. 2025;80(3S):87–95.
- 13. Кравченко О.В., Чесноков Ю.М., Афонина Ж.А., Василенко К.С. Структура трансляционного преинициаторного комплекса из экстракта зародышей пшеницы. *Вести. Моск. ун-та. Сер. 16. Биол.* 2025;80(3S):96—100.
- 14. Моисеенко А.В., Бубенчиков М.А., Чжан И., Кузнецов А.С., Летаров А.В., Соколова О.С. Реконструкция осевой фибриллы Stx-конвертирующего бактериофага phi24B с помощью криоэлектронной микроскопии. Вести. Моск. ун-та. Сер. 16. Биол. 2025;80(3S):101—105.
- 15. Кордюкова Л.В., Моисеенко А.В., Трифонова Т.С., Ахметова А.И., Грачева А.В., Корчевая Е.Р., Яминский И.В., Файзулоев Е.Б. Исследование холодоадаптированного ослабленного мутанта SARS-CoV-2 методами просвечивающей, криоэлектронной и атомно-силовой микроскопии. Вести. Моск. ун-та. Сер. 16. Биол. 2025;80(3S):106—112.
- 16. Волох О.И., Сивкина А.Л., Студитский В.М., Соколова О.С. Роль С-концевого домена Роб3 в разворачивании нуклеосом комплексом FACT: данные электронной микроскопии. *Вестн. Моск. ун-та. Сер. 16. Биол.* 2025;80(3S):113—117.
- 17. Казаков Е.П., Чесноков Ю.М., Киреев И.И., Голышев С.А. Анализ архитектуры гетерохроматина с помощью криоэлектронной томографии. *Вести. Моск. ун-та. Сер. 16. Биол.* 2025;80(3S):118—123.

Поступила в редакцию 30.09.2025 Принята в печать 06.10.2025

EDITORIAL

Results of the Fifth Russian International Conference on Cryo-Electron Microscopy (RICCEM-2025)

T.B. Stanishneva-Konovalova¹, I.A. Yaroshevich², M.P. Kirpichnikov¹, O.S. Sokolova¹, *

¹Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 1–73 Leninskie Gory, 119234, Moscow, Russia;
²Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 1–24 Leninskie gory, 119234, Moscow, Russia
*e-mail: sokolova@mail.bio.msu.ru

From June 8 to 11, 2025, the 5th Russian International Conference on Cryo-Electron Microscopy (RICCEM-2025) was held at the Faculty of Biology at Moscow State University. More than 300 researchers from 11 countries participated in online and offline formats. This article briefly discusses the contents of the articles in the special issue of the journal "Vestnik Moskovskogo universiteta. Seria 16. Biologia" published following the conference.

Keywords: cryo-electron microscopy, cryo-EM, structural biology, macromolecular structures, conference, RICCEM

Сведения об авторах

Станишнева-Коновалова Татьяна Борисовна — канд. биол. наук, ст. науч. сотр. кафедры биоинженерии биологического факультета МГУ. Тел.: 8-495-939-57-38; e-mail: stanishneva-konovalova@mail.bio.msu.ru; ORCID: https://orcid.org/0000-0002-8427-8178

Ярошевич Игорь Александрович — канд. биол. наук., ст. науч. сотр. кафедры биофизики биологического факультета МГУ. Тел.: 8-495-939-11-16; e-mail: iyapromo@gmail.com; ORCID: https://orcid.org/0000-0002-8525-5568

Соколова Ольга Сергеевна — докт. биол. наук, проф. кафедры биоинженерии биологического факультета МГУ. Тел.: 8-495-939-57-38; e-mail: sokolova@mail.bio.msu.ru; ORCID: https://orcid.org/0000-0003-4678-232X

Кирпичников Михаил Петрович — акад., проф., докт. биол. наук, зав. кафедрой биоинженерии биологического факультета МГУ, зав. отделом биоинженерии ИБХ РАН, гл. ред. журнала «Вестник Московского университета. Серия 16. Биология». Тел.: 8-495-939-27-76; e-mail: kirpichnikov@inbox.ru; ORCID: https://orcid.org/0000-0001-8170-1607