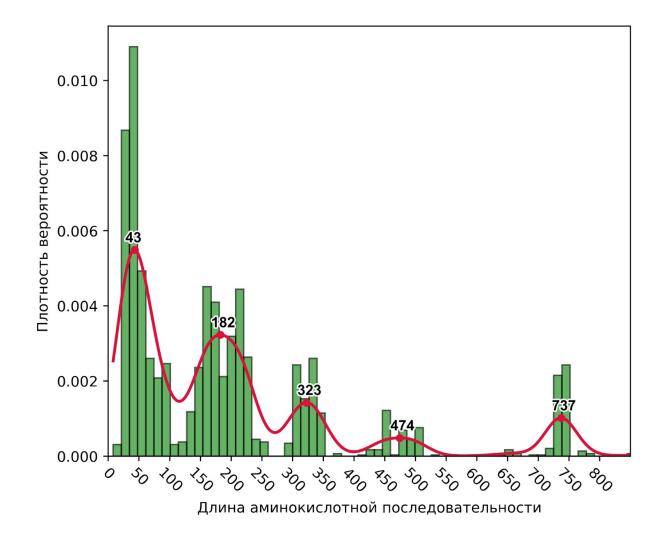
## Дополнительная информация

## Структурные особенности каротиноид-связывающих белков М.М. Сурков1, А.Ю. Литовец1, А.А. Мамчур1, Т.Б. Станишнева-Коновалова2, И.А. Ярошевич\*1

1Кафедра биофизики, биологический факультет, Московский государственный университет имени М.В. Ломоносова, Россия, 119234, г. Москва, Ленинские горы, д. 1, стр. 24;

2Кафедра биоинженерии, биологический факультет, Московский государственный университет имени М.В. Ломоносова, Россия, 119234, г. Москва, Ленинские горы, д. 1, стр.

*7*3


**Таблица SI1.** Полный список лигандов, использованных в работе.

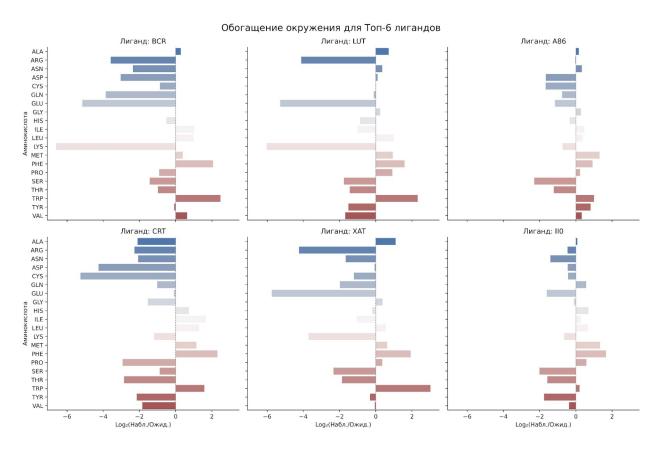
| Код лиганда в базе PDB |  |
|------------------------|--|
| OIE                    |  |
| 32N                    |  |
| 45D                    |  |
| 45H                    |  |
| 5X6                    |  |
| 7OT                    |  |
| 8CT                    |  |
| A1EFU                  |  |
| A1L0S                  |  |
| A1LXP                  |  |
| A86                    |  |
| AXT                    |  |
| BCR                    |  |
|                        |  |

| Код лиганда в базе PDB |  |
|------------------------|--|
| IWJ                    |  |
| K3I                    |  |
| KGD                    |  |
| LUT                    |  |
| LYC                    |  |
| NEX                    |  |
| NS0                    |  |
| NS1                    |  |
| NS5                    |  |
| O1U                    |  |
| PID                    |  |
| PQ9                    |  |
| Q6L                    |  |
|                        |  |

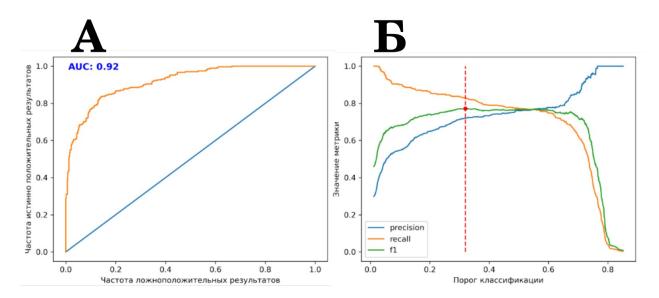
| C7Z |  |
|-----|--|
| CRT |  |
| DD6 |  |
| ECH |  |
| EQ3 |  |
| ET4 |  |
| H4X |  |
| HEQ |  |
| I7D |  |
| IHT |  |
| IIO |  |
| II3 |  |
| IRM |  |
|     |  |

| QDL |   |
|-----|---|
| RAW |   |
| RRX |   |
| SP2 |   |
| SPN |   |
| SPO |   |
| U4Z |   |
| UIX |   |
| V7N | _ |
| WVN | _ |
| XAT | - |
| ZE0 | _ |
| ZEX | _ |
|     |   |




**Рисунок SI1**. Столбчатая диаграмма с распределением длин аминокислотных последовательностей уникальных связывающих каротиноиды цепей.

Распределение длин аминокислотных последовательностей было визуализировано с помощью столбчатой диаграммы, отображающей плотность вероятности (Рис SI1).


Анализ последовательностей, соответствующих основным пикам на графике распределения длин, выявил характерные классы белков, ассоциированные с каждым пиком:

- До 48 а.к.: единичные альфа-спирали, содержащие в основном гидрофобные аминокислоты.
- От 140 до 183 а.к.: в основном последовательности, содержащие несколько гидрофобных альфа-спиралей. Среди них, в основном, LHC-like белки. Встречаются последовательности из крустацианинов, красного каротиноидного белка (RCP), спирального каротиноидного белка (Helical carotenoid protein).

- От 184 до 200 а.к.: в основном, различные хлорофилл-связывающие белки: хлорофилл а-b связывающие белки, хлорофилл а-c связывающие белки и так далее.
- От 300 до 350 а.к.: в основном, белки реакционных центров фотосистем: белки D2, D1; М-субъединица реакционного центра у пурпурных бактерий; последовательности оранжевого каротиноидного белка (ОСР).
- От 440 до 500 а.к.: в основном, белки фотосистемы II: коровые светособирающие белки; попадаются белки фотосистемы I, такие как белок, кодируемый геном *psaL*.
- От 700 до 760 а.к.: в основном, белки реакционного фотосистемы I, кодируемые генами *psaA*, *psaB* (белки Photosystem I P700 chlorophyll a apoprotein A1 и Photosystem I P700 chlorophyll a apoprotein A2)



**Рисунок SI2.** Специфика аминокислотного окружения для шести наиболее представленных в выборке каротиноидов: β-каротин (BCR), лютеин (LUT), астаксантин (A86), кантаксантин (CRT), зеаксантин (XAT) и сфероиден (110). Обозначения аналогичны Рисунку 2.



**Рисунок SI3. Кривые производительности классификатора. А** – ROC-кривая, **Б** – Precision-Recall-F1 кривая; красная точка соответствует максимальному значению F1.

**Таблица SI2.** Метрики Precision@k, рассчитанные на тестовом наборе данных

| Precision@50  | 1,00 |
|---------------|------|
| Precision@100 | 0,96 |
| Precision@150 | 0,93 |