Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

Effect of ONC201 antitumor drug on the number of mitochondrial nucleoids in BT474 breast cancer cells in culture

Abstract

The effect of the cytostatic antitumor drug ONC201 on the number of mitochondrial nucleoids and the average size of mitochondria in the BT474 human breast cancer cells was studied. It was shown that incubation of BT474 cells with ONC201 (10 μM) for 24 h reduces the number of nucleoids from 262 ± 46 to 140 ± 27 per cell, and in cells incubated with drug for 48 h the number of mitochondrial nucleoids was further reduced to 67 ± 22 per cell. It was found that the ONC201-induced change in the number of nucleoids per cell depends on the duration of treatment. Short-term (24 h) and long-term (48 h) exposure of cells to a single dose of ONC201 led to a reversible and irreversible change in the number of nucleoids per cell, respectively. Thus, after 24 h of exposure and subsequent 120 h washout with ONC201-free medium, the number of nucleoids was restored to 211 ± 47 per cell, while 120-hour washout of drug after 48 hours of treatment did not lead to the restoration of the number of nucleoids, and their number remained at the level of 70 ± 59 per cell. Changes in the number of mitochondrial nucleoids, regardless of the duration of cell treatment with ONC201, positively correlated with changes in the average size of mitochondria as an indicator of their morphology. It is concluded that ONC201 has a cytostatic effect on BT474 cells in culture, suppresses cell proliferation and induces a reversible or irreversible decrease in the number of mitochondrial nucleoids and fragmentation of mitochondria, depending on the duration of treatment.

About the Authors

A. A. Mishukov
Lomonosov Moscow State University
Russian Federation

1–12, Leninskiye gory, Moscow, 119234

 



A. V. Berezhnov
Institute of Cell Biophysics, Russian Academy of Sciences
Russian Federation

3 Institutskaya st., Pushchino, Moscow Region, 142290, Russia

 



M. I. Kobyakova
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
Russian Federation

3 Institutskaya st., Pushchino, Moscow Region, 142290

 



Ya. V. Evstratova
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
Russian Federation

3 Institutskaya st., Pushchino, Moscow Region, 142290

 



E. Yu. Mndlyan
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
Russian Federation

3 Institutskaya st., Pushchino, Moscow Region, 142290

 



E. L. Holmuhamedov
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
Russian Federation

3 Institutskaya st., Pushchino, Moscow Region, 142290

 



References

1. Allen J.E., Kline C.L., Prabhu V.V., et al. Discovery and clinical introduction of first-in-class imipridone ONC201 // Oncotarget. 2016. Vol. 7. N 45. P. 74380–74392.

2. Arrillaga-Romany I., Chi A.S., Allen J.E., Oster W., Wen P.Y., Batchelor T.T. A phase 2 study of the first imipridone ONC201, a selective DRD2 antagonist for oncology, administered every three weeks in recurrent glioblastoma // Oncotarget. 2017. Vol. 8. N 45. P. 79298–79304.

3. Graves P.R., Aponte-Collazo L.J., Fennell E.M. J., et al. Mitochondrial protease ClpP is a target for the anticancer compounds ONC201 and related analogues // ACS Chem. Biol. 2019. Vol. 14. N 5. P. 1020–1029.

4. Ishizawa J., Zarabi S.F., Davis R.E., et al. Mitochondrial ClpP-mediated proteolysis induces selective cancer cell lethality // Cancer Cell. 2019. Vol. 35. N 5. P. 721–737.

5. Greer Y.E., Porat-Shliom N., Nagashima K., et al. ONC201 kills breast cancer cells in vitro by targeting mitochondria // Oncotarget. 2018. Vol. 9. N 26. P. 18454–18479.

6. Stoker M.L., Newport E., Hulit J.C., West A.P., Morten K.J. Impact of pharmacological agents on mitochondrial function: a growing opportunity? // Biochem. Soc. Trans. 2019. Vol. 47. N 6. P. 1757–1772.

7. Taanman J.W. The mitochondrial genome: structure, transcription, translation and replication // Biochim. Biophys. Acta 1999. Vol. 1410. N 2. P. 103–123.

8. Calvo S.E., Mootha V.K. The mitochondrial proteome and human disease // Annu. Rev. Genomics Hum. Genet. 2010. Vol. 11. P. 25–44.

9. Green D.R., Galluzzi L., Kroemer G. Cell biology. Metabolic control of cell death // Science. 2014. Vol. 345. N 6203: 1250256.

10. Porporato P. E., Filigheddu N., Pedro J.M.B., Kroemer G., Galluzzi L. Mitochondrial metabolism and cancer // Cell Res. 2018. Vol. 28. N 3. P. 265–280.

11. Fontana G.A., Gahlon H.L. Mechanisms of replication and repair in mitochondrial DNA deletion formation // Nucleic Acids Res. 2020. Vol. 48. N 20. P. 11244–11258.

12. La Morgia C., Maresca A., Caporali L., Valentino M.L., Carelli V. Mitochondrial diseases in adults // J. Intern. Med. 2020. Vol. 287. N 6. P. 592–608.

13. Ralff M.D., Jhaveri A., Ray J.E., Zhou L., Lev A., Campbell K.S., Dicker D.T., Ross E.A., El-Deiry W.S. TRAIL receptor agonists convert the response of breast cancer cells to ONC201 from anti-proliferative to apoptotic // Oncotarget. 2020. Vol. 11. N 42. P. 3753–3769.

14. McArthur K., Whitehead L.W., Heddleston J.M., et al. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis // Science. 2018. Vol. 359. N 6378: eaao6047.

15. Pruss M., Dwucet A., Tanriover M., Hlavac M., Kast, R.E., Debatin K.M., Wirtz C.R., Halatsch M.E., Siegelin M.D., Westhoff M.A., Karpel-Massler G. Dual metabolic reprogramming by ONC201/TIC10 and 2-Deoxyglucose induces energy depletion and synergistic anti-cancer activity in glioblastoma // Br. J. Cancer. 2020. Vol. 122. N 8. P. 1146–1157.

16. Kline C.L., Van den Heuvel A.P., Allen J.E., Prabhu V.V., Dicker D.T., El-Deiry, W.S. ONC201 kills solid tumor cells by triggering an integrated stress response dependent on ATF4 activation by specific eIF2alpha kinases // Sci. Signal. 2016. Vol. 9. N 415: ra18.

17. Geiss C., Witzler C., Poschet G., Ruf W., RegnierVigouroux A. Metabolic and inflammatory reprogramming of macrophages by ONC201 translates in a pro-inflammatory environment even in presence of glioblastoma cells // Eur. J. Immunol. 2021. Vol. 51. N 5. P. 1246–1261.

18. Kukat C., Wurm C.A., Spåhr H., Falkenberg M., Larsson N.G., Jakobs S. Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA // Proc. Natl. Acad. Sci. U.S.A. 2011. Vol. 108. N 33. P. 13534–13539.

19. Bonekamp N.A., Larsson N.G. SnapShot: Mitochondrial nucleoid // Cell. 2018. Vol. 172. N 1–2. P. 388–388.e1.

20. Sasaki T., Sato Y., Higashiyama T., Sasaki N. Live imaging reveals the dynamics and regulation of mitochondrial nucleoids during the cell cycle in Fucci2- HeLa cells // Sci. Rep. 2017. Vol. 7: e11257.

21. Leonard A.P., Cameron, R.B., Speiser J.L., Wolf B.J., Peterson Y.K., Schnellmann R.G., Beeson C.C., Rohrer B. Quantitative analysis of mitochondrial morphology and membrane potential in living cells using high-content imaging, machine learning, and morphological binning // Biochim. Biophys. Acta. 2015. Vol. 1853. N 2. P. 348–360.

22. Schindelin J., Arganda-Carreras I., Frise E., et al. Fiji: an open-source platform for biological-image analysis // Nat. Methods. 2012. Vol. 9. N 7. P. 676–682.

23. Armstrong R.A. When to use the Bonferroni correction // Ophthalmic Physiol. Opt. 2014. Vol. 34. N 5. P. 502–508.

24. Galluzzi L., Bravo-San Pedro J.M., Kroemer G. Organelle-specific initiation of cell death // Nat. Cell Biol. 2014. Vol. 16. N 8. P. 728–736.

25. Galluzzi L., Bravo-San Pedro J. M., Kepp O., Kroemer G. Regulated cell death and adaptive stress responses // Cell Mol. Life Sci. 2016. Vol. 73. N 11–12. P. 2405–2410.

26. Gallage, S., Gil J. Mitochondrial Dysfunction Meets Senescence // Trends Biochem. Sci. 2016. Vol. 41. N 3. P. 207–209.

27. Vasileiou P.V.S., Evangelou K., Vlasis K., Fildisis G., Panayiotidis M.I., Chronopoulos, E., Passias P.G., Kouloukoussa M., Gorgoulis V.G., Havaki S. Mitochondrial homeostasis and cellular senescence // Cells. 2019. Vol. 8. N 7: 686.

28. Prabhu V.V., Morrow S., Rahman Kawakibi A., et al. ONC201 and imipridones: Anti-cancer compounds with clinical efficacy // Neoplasia. 2020. Vol. 22. N 12. P. 725–744.

29. Ishizawa J., Kojima K., Chachad D., et al. ATF4 induction through an atypical integrated stress response to ONC201 triggers p53-independent apoptosis in hematological malignancies // Sci. Signal. 2016. Vol. 9. N 415: ra17.


Review

For citations:


Mishukov A.A., Berezhnov A.V., Kobyakova M.I., Evstratova Ya.V., Mndlyan E.Yu., Holmuhamedov E.L. Effect of ONC201 antitumor drug on the number of mitochondrial nucleoids in BT474 breast cancer cells in culture. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2021;76(3):110-117. (In Russ.)

Views: 808


ISSN 0137-0952 (Print)