Role of reactive oxygen species in tone regulation of respiratory and locomotor muscle feed arteries in the rat
Abstract
The skeletal muscles contractile activity is associated with increased reactive oxygen species (ROS) production. Respiratory and locomotor muscles differ in the patterns of contractile activity, which can create different conditions for ROS production and their effect on feed arteries. The aim of this work was to study the role of ROS, including produced by NADPH oxidases (NOX), in diaphragm artery (a. phrenica) and deep shoulder artery (a. profunda brachii) tone regulation of the rat. Vasomotor responses of arterial preparations were studied in isometric regimen. The NOX inhibitor, VAS2870, caused relaxation, which was more pronounced in the diaphragm arteries compared to the shoulder arteries: at the concentration of 1 μM, the diaphragm arteries relaxed to 33%, and the shoulder arteries – to 91% of the precontraction level. Tiron (O2. - scavenger) showed similar results: at the 10 mM concentration, it caused relaxation of the diaphragm arteries to 38%, and the shoulder arteries – to 66%. At the same time, catalase (3000 U/ml) increased the deep shoulder arteries contraction but did not affect it in the diaphragm arteries. Using quantitative PCR, it was shown that the contents of mRNA isoforms NOX, p22phox, p47phox, p67phox, Poldip2, Gpx-1, SOD-1 and catalase do not differ between arteries, while the content of SOD-3 mRNA in the diaphragm arteries is less than in the shoulder arteries. Thus, the contribution of ROS, produced by NOX, to the feed arteries tone regulation of the respiratory muscles is higher than in the locomotor muscles. Experiments using tiron and catalase have shown that O2. - increases the arteries contractile responses, while H2O2, on the contrary, causes the shoulder arteries relaxation. One of the reasons for the more pronounced effect of O2 - in the diaphragm arteries may be the relatively low SOD-3 expression.
About the Authors
A. A. BorzykhRussian Federation
Khoroshevskoe shosse 76A, Moscow, 123007
A. A. Shvetsova
Russian Federation
Leninskiye gory 1–12, Moscow, 119234
I. V. Kuzmin
Russian Federation
Leninskiye gory 1–12, Moscow, 119234
S. V. Buravkov
Russian Federation
Lomonosovskiy prospect 27–1, Moscow, 119192
D. K. Gaynullina
Russian Federation
Leninskiye gory 1–12, Moscow, 119234
O. S. Tarasova
Russian Federation
Khoroshevskoe shosse 76A, Moscow, 123007; Leninskiye gory 1–12, Moscow, 119234
References
1. Aldosari S., Awad M., Harrington E.O., Sellke F.W., Abid M.R. Subcellular reactive oxygen species (ROS) in cardiovascular pathophysiology // Antioxidants (Basel). 2018. Vol. 7. N 1: 14.
2. Tejero J., Shiva S., Gladwin M.T. Sources of vascular nitric oxide and reactive oxygen species and their regulation // Physiol. Rev. 2019. Vol. 99. N 1. P. 311–379.
3. Knock G.A. NADPH oxidase in the vasculature: Expression, regulation and signalling pathways; role in normal cardiovascular physiology and its dysregulation in hypertension // Free Radic. Biol. Med. 2019. Vol. 145. P. 385–427.
4. Lassègue B., Martín A., Griendling K.K. Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system // Circ. Res. 2012. Vol. 110. N 10. P. 1364–1390.
5. Wang Y., Branicky R., Noë A., Hekimi S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling // J. Cell Biol. 2018. Vol. 217. N 6. P. 1915–1928.
6. Powers S.K., Radak Z., Ji L.L. Exercise-induced oxidative stress: past, present and future // J. Physiol. 2016. Vol. 594. N 18. P. 5081–5092.
7. Chatterjee S., Fisher A.B. Mechanotransduction in the endothelium: role of membrane proteins and reactive oxygen species in sensing, transduction, and transmission of the signal with altered blood flow // Antioxid. Redox Signal. 2014. Vol. 20. N 6. P. 899–913.
8. Hussain S.N. Regulation of ventilatory muscle blood flow // J. Appl. Physiol. 1996. Vol. 81. N 4. P. 1455–1468.
9. Polla B., D’Antona G., Bottinelli R., Reggiani C. Respiratory muscle fibres: specialisation and plasticity // Thorax. 2004. Vol. 59. N 9. P. 808–817.
10. Borzykh A.A., Vinogradova O.L., Tarasova O.S. Diaphragm: The relationship between blood supply regulation and characteristics of the contractile function // Moscow Univ. Biol. Sci. Bull. 2020. Vol. 75. N 2. P. 41–49.
11. Tarasova O.S., Kalenchuk V.U., Borzykh A.A., Andreev-Andrievsky A.A, Buravkov S.V., Sharova A.P., Vinogradova O.L. A comparative analysis of the vasomotor responses and innervation of small arteries in rat locomotor and respiratory muscles // Biophysics. 2008. Vol. 53. N 6. P. 621–625.
12. Mulvany M.J., Halpern W. Contractile properties of small arterial resistance vessels in spontaneously hypertensive and normotensive rats // Circ. Res. 1977. Vol. 41. N 1. P. 19–26.
13. Altenhöfer S., Kleikers P.W.M., Radermacher K.A., Scheurer P., Hermans J.J.R., Schiffers P., Ho H., Wingler K., Schmidt H.H.H.W. The NOX toolbox: validating the role of NADPH oxidases in physiology and disease // Cell Mol. Life Sci. 2012. Vol. 69. N 14. P. 2327–2343.
14. Taiwo F.A. Mechanism of tiron as scavenger of superoxide ions and free electrons // Spectroscopy. 2008. Vol. 22. N 6. P. 491–498.
15. Borzykh A.A., Andreev-Andrievskiy A.A., Kalenchuk V.U., Mochalov S.V., Buravkov S.V., Kuzmin I.V., Borovik A.S., Vinogradova O.L., Tarasova O.S. Strategies of adaptation of small arteries in diaphragm and gastrocnemius muscle to aerobic exercise training // Hum. Physiol. 2017. Vol. 43. N 4. P. 437–445.
16. Braun D., Zollbrecht C., Dietze S., Schubert R., Golz S., Summer H., Persson P.B., Carlström M., Ludwig M., Patzak A. Hypoxia/reoxygenation of rat renal arteries impairs vasorelaxation via modulation of endotheliumindependent sGC/cGMP/PKG signaling // Front. Physiol. 2018. Vol. 9: 480.
17. Li H., Wang Y., Feng D., Liu Y., Xu M., Gao A., Tian F., Zhang L., Cui Y., Wang Z., Chen G. Alterations in the time course of expression of the Nox family in the brain in a rat experimental cerebral ischemia and reperfusion model: effects of melatonin // J. Pineal. Res. 2014. Vol. 57. N 1. P. 110–119.
18. Chen X., Qi L., Fan X., Tao H., Zhang M., Gao Q., Liu Y., Xu T., Zhang P., Su H., Tang J., Xu Z. Prenatal hypoxia affected endothelium-dependent vasodilation in mesenteric arteries of aged offspring via increased oxidative stress // Hypertens. Res. 2019. Vol. 42. N 6. P. 863–875.
19. Lima T.I., Monteiro I.C., Valença S., LealCardoso J.H., Fortunato R.S., Carvalho D.P., Teodoro B.G., Ceccatto V.M. Effect of exercise training on liver antioxidant enzymes in STZ-diabetic rats // Life Sci. 2015. Vol. 128. P. 64–71.
20. Lyle A.N., Deshpande N.N., Taniyama Y., SeidelRogol B., Pounkova L., Du P., Papaharalambus C., Lassègue B., Griendling K.K. Poldip2, a novel regulator of Nox4 and cytoskeletal integrity in vascular smooth muscle cells // Circ. Res. 2009. Vol. 105. N 3. P. 249–259.
21. Knock G.A., Snetkov V.A., Shaifta Y., Connolly M., Drndarski S., Noah A., Pourmahram G.E., Becker S., Aaronson P.I., Ward J.P.T. Superoxide constricts rat pulmonary arteries via Rho-kinase-mediated Ca2+ sensitization // Free Radic. Biol. Med. 2009. Vol. 46. N 5. P. 633–642.
22. Lai E.Y., Wellstein A., Welch W.J., Wilcox C.S. Superoxide modulates myogenic contractions of mouse afferent arterioles // Hypertension. 2011. Vol. 58. N. 4. P. 650–656.
23. Tsai M-H., Jiang M.J. Reactive oxygen species are involved in regulating alpha1-adrenoceptor-activated vascular smooth muscle contraction // J. Biomed. Sci. 2010. Vol. 17. N 1: 67.
24. Bleeke T., Zhang H., Madamanchi N., Patterson C., Faber J.E. Catecholamine-induced vascular wall growth is dependent on generation of reactive oxygen species // Circ. Res. 2004. Vol. 94. N 1. P. 37–45.
25. Shimokawa H., Yasutake H., Fujii K., Owada M.K., Nakaike R., Fukumoto Y., Takayanagi T., Nagao T., Egashira K., Fujishima M., Takeshita A. The importance of the hyperpolarizing mechanism increases as the vessel size decreases in endothelium-dependent relaxations in rat mesenteric circulation // J. Cardiovasc. Pharmacol. 1996. Vol. 28. N 5. P. 703–711.
26. Garland C.J., Plane F., Kemp B.K., Cocks T.M. Endothelium-dependent hyperpolarization: a role in the control of vascular tone // Trends Pharmacol. Sci. 1995. Vol. 16. N 1. P. 23–30.
27. Kuzkaya N., Weissmann N., Harrison D.G., Dikalov S. Interactions of peroxynitrite, tetrahydrobiopterin, ascorbic acid, and thiols: implications for uncoupling endothelial nitric-oxide synthase // J. Biol. Chem. 2003. Vol. 278. N 25. P. 22546–22554.
28. Shimokawa H. Reactive oxygen species in cardiovascular health and disease: special references to nitric oxide, hydrogen peroxide, and Rho-kinase // J. Clin. Biochem. Nutr. 2020. Vol. 66. N 2. P. 83–91.
29. Knock G.A. NADPH oxidase in the vasculature: Expression, regulation and signalling pathways; role in normal cardiovascular physiology and its dysregulation in hypertension // Free Radic. Biol. Med. 2019. Vol. 145. P. 385–427.
30. Montezano A.C., Touyz R.M. Reactive oxygen species and the cardiovascular system. Series: Integrated systems physiology. Glasgow: Morgan & Claypool, 2012. 102 pp.
31. Vogel P.A., Yang X., Moss N.G., Arendshorst W.J. Superoxide enhances Ca2+ entry through L-type channels in the renal afferent arteriole // Hypertension. 2015. Vol. 66. N 2. P. 374–381.
32. Jin L., Ying Z., Webb R.C. Activation of Rho/Rho kinase signaling pathway by reactive oxygen species in rat aorta // Am. J. Physiol. Heart Circ. Physiol. 2004. Vol. 287. N 4. P. H1495–H1500.
33. Somlyo A.P., Somlyo A.V. Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase // Physiol. Rev. 2003. Vol. 83. N 4. P. 1325–1358.
Review
For citations:
Borzykh A.A., Shvetsova A.A., Kuzmin I.V., Buravkov S.V., Gaynullina D.K., Tarasova O.S. Role of reactive oxygen species in tone regulation of respiratory and locomotor muscle feed arteries in the rat. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2021;76(3):134-141. (In Russ.)