Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

Influence of linker DNA on nucleosome structure according to single-particle fluorescence microscopy data

Abstract

Mononucleosomes assembled using DNA templates of various lengths that contain a nucleosome-positioning sequence are widely used in molecular biological studies, but their structural features require detailed investigation. The single-particle fluorescence microscopy based on the Förster resonance energy transfer was used to compare the structure of nucleosomes with two 20 bp length DNA linkers and core-nucleosomes without linkers (CN) in solutions containing 150 mM KCl, 5 mM MgCl2 (or without MgCl2), as well as in solutions with increased ionic strength (0.5 and 0.7 M KCl). It was found that these nucleosomes are present in solutions as two dominant subpopulations, which differ in the DNA folding on the histone octamer. It was revealed that CN and 2LN differ in the ratio of these subpopulations, and the differences increase in the presence of Mg2+ ions. With an increase in the ionic strength, conformational reorganizations occur in the core region of the nucleosomes. The character of the reorganizations differs in 2LN and CN at 0.5 M KCl, but becomes similar at 0.7 M KCl. The obtained data indicate that, despite the similar conformations of 2LN and CN, the same factors can induce different effect on the structure of these nucleosomes, and it should be taken into account when, for example, studying the interactions of mononucleosomes with various nuclear proteins in vitro.

About the Authors

T. V. Andreeva
Lomonosov Moscow State University
Russian Federation

Leninskie Gory 1–12, Moscow, 119234



A. V. Lyubitelev
Lomonosov Moscow State University
Russian Federation

Leninskie Gory 1–12, Moscow, 119234



N. V. Malyuchenko
Lomonosov Moscow State University
Russian Federation

Leninskie Gory 1–12, Moscow, 119234



V. M. Studitsky
Lomonosov Moscow State University; Fox Chase Cancer Center
Russian Federation

Leninskie Gory 1–12, Moscow, 119234;  Cottman Avenue 333, Philadelphia, 19111, Pennsylvania, USA



M. P. Kirpichnikov
Lomonosov Moscow State University; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Russian Federation

Leninskie Gory 1–12, Moscow, 119234; ul. Miklukho-Maklaya 16/10, 117997, Moscow



A. V. Feofanov
Lomonosov Moscow State University; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Russian Federation

Leninskie Gory 1–12, Moscow, 119234; ul. Miklukho-Maklaya 16/10, 117997, Moscow



References

1. Zhou K., Gaullier G., Luger K. Nucleosome structure and dynamics are coming of age // Nat. Struct. Mol. Biol. 2019. Vol. 26. N 1. P. 3–13.

2. Gaykalova D.A., Kulaeva O.I., Bondarenko V.A., Studitsky V.M. Preparation and analysis of uniquely positioned mononucleosomes // Methods in Molecular Biology, vol. 523 / Eds. S. Chellappan. N.Y.: Humana press, 2009. P. 109–123.

3. Mizuguchi G., Shen X., Landry J., Wu W.H., Sen S., Wu C. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex // Science. 2004. Vol. 303. N 5656. P. 343–348.

4. Valieva M.E., Armeev G.A., Kudryashova K.S., Gerasimova N.S., Shaytan A.K., Kulaeva O.I., McCullough L.L., Formosa T., Georgiev P.G., Kirpichnikov M.P., Studitsky V.M., Feofanov A.V. Large-scale ATP-independent nucleosome unfolding by a histone chaperone // Nat. Struct. Mol. Biol. 2016. Vol. 23. N 12. P. 1111–1116.

5. Gaykalova D.A., Kulaeva O.I., Volokh O., Shaytan A.K., Hsieh F.K., Kirpichnikov M.P., Sokolova O.S., Studitsky V.M. Structural analysis of nucleosomal barrier to transcription // Proc. Natl. Acad. Sci. U.S.A. 2015. Vol. 112. N 43. P. 5787–5795.

6. Kim J., Wei S., Lee J., Yue H., Lee T.H. Singlemolecule observation reveals spontaneous protein dynamics in the nucleosome // J. Phys. Chem. B. 2016. Vol. 120. N 34. P. 8925–8931.

7. Chen Y., Tokuda J.M., Topping T., Sutton J.L., Meisburger S.P., Pabit S.A., Gloss L.M. Pollack L. Revealing transient structures of nucleosomes as DNA unwinds // Nucleic Acids Res. 2014. Vol. 42. N 13. P. 8767–8776.

8. Huang Y.C., Su C.J., Korolev N., Berezhnoy N.V., Wang S., Soman A., Chen C.Y., Chen H.L., Jeng U.S., Nordenskiöld L. The effect of linker DNA on the structure and interaction of nucleosome core particles // Soft Matter. 2018. Vol. 14. N 45. P. 9096–9106.

9. Andreeva T., Maluchenko N., Chertkov O., Studitsky V., Feofanov A., Kirpichnikov M. Length of DNA linker affects nucleosomal DNA structure // Microsc. Microanal. 2020. Vol. 26. Suppl. S2. P. 1390–1392.

10. Clark N.J., Kramer M., Muthurajan U.M., Luger K. Alternative modes of binding of poly(ADP-ribose) polymerase 1 to free DNA and nucleosomes // J. Biol. Chem. 2012. Vol. 287. N 39. P. 32430–32439.

11. White A.E., Hieb A.R., Luger K. A quantitative investigation of linker histone interactions with nucleosomes and chromatin // Sci. Rep. 2016. Vol. 6: 19122.

12. d’Erme M., Yang G., Sheagly E., Palitti F., Bustamante C. Effect of poly(ADP-ribosyl)ation and Mg2+ ions on chromatin structure revealed by scanning force microscopy // Biochemistry. 2001. Vol. 40. N 37. P. 10947–10955.

13. Schwarz P.M., Hansen J.C. Formation and stability of higher order chromatin structures. Contributions of the histone octamer // J. Biol. Chem. 1994. N 269. N 23. P. 16284–16289.

14. Guéroult M., Boittin O., Mauffret O., Etchebest C., Hartmann B. Mg2+ in the major groove modulates B-DNA structure and dynamics // PLoS One. 2012. Vol. 7. N 7: e41704.

15. Armeev G.A., Gribkova A.K., Pospelova I., Komarova G.A., Shaytan A.K. Linking chromatin composition and structural dynamics at the nucleosome level // Curr. Opin. Struct. Biol. 2019. Vol. 56. P. 46–55.

16. Lai W.K.M., Pugh B.F. Understanding nucleosome dynamics and their links to gene expression and DNA replication // Nat. Rev. Mol. Cell Biol. 2017. Vol. 18. N 9. P. 548–562.

17. Shi X., Prasanna C., Nagashima T., Yamazaki T., Pervushin K., Nordenskiöld L. Structure and dynamics in the nucleosome revealed by solid-state NMR // Angew. Chem. Int. Ed. Engl. 2018. Vol. 130. N 31. P. 9882–9886.

18. Kudryashova K.S., Chertkov O.V., Nikitin D.V., Pestov N.A., Kulaeva O.I., Efremenko A.V., Solonin A.S., Kirpichnikov M.P., Studitsky V.M., Feofanov A.V. Preparation of mononucleosomal templates for analysis of transcription with RNA polymerase using spFRET // Methods in Molecular Biology, vol. 1288 / Eds. S. Chellappan. N.Y.: Humana press, 2015. P. 395–412.

19. Feofanov A.V., Andreeva T.V., Studitsky V.M., Kirpichnikov M.P. Reversibility of structural rearrangements in mononucleosomes induced by ionic strength // Moscow Univ. Biol. Sci. Bull. 2018. Vol. 73. N 3. P. 157–161.

20. Buning R., Van Noort J. Single-pair FRET experiments on nucleosome conformational dynamics // Biochimie. 2010. Vol. 92. N 12. P. 1729–1740.

21. Robbins T.J., Ziebarth J.D., Wang Y. Comparison of monovalent and divalent ion distributions around a DNA duplex with molecular dynamics simulation and a PoissonBoltzmann approach // Biopolymers. 2014. Vol. 101. N 8. P. 834–848.

22. Böhm V., Hieb A.R., Andrews A.J., Gansen A., Rocker A., Tóth K., Luger K., Langowski J. Nucleosome accessibility governed by the dimer/tetramer interface // Nucleic Acids Res. 2011. Vol. 39. N 1. P. 3093–3102.

23. Chen Y., Tokuda J.M., Topping T., Meisburger S.P., Pabit S.A., Gloss L.M., Pollack L. Asymmetric unwrapping of nucleosomal DNA propagates asymmetric opening and dissociation of the histone core // Proc. Natl. Acad. Sci. U.S.A. 2017. Vol. 114. N 2. P. 334–339.


Review

For citations:


Andreeva T.V., Lyubitelev A.V., Malyuchenko N.V., Studitsky V.M., Kirpichnikov M.P., Feofanov A.V. Influence of linker DNA on nucleosome structure according to single-particle fluorescence microscopy data. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2021;76(3):142-147. (In Russ.)

Views: 329


ISSN 0137-0952 (Print)