Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

Molecular modeling of HR2 and transmembrane domains of the SARS-CoV-2 S-protein in the prefusion state

Abstract

The SARS-CoV-2 virus causes the coronavirus infection COVID-19 and remains in the focus of the researchers around the world. The penetration of the SARS-CoV-2 virus into the cell begins with the binding of its S-protein to the angiotensin-converting enzyme-2 (ACE2) expressed on the cell surface. The study of the spatial structure of the S-protein is necessary for the understanding of the molecular aspects of its functioning. At present, the structure of almost the entire S-protein molecule has been well studied by experimental methods, with the exception of its endodomain, transmembrane domain, and adjacent ectodomain residues. We performed molecular modeling of the structure of the S-protein fragment corresponding to its supercoiled HR2 domain and fully palmitoylated transmembrane domain. The stability of the model in the lipid bilayer is confirmed by means of molecular dynamics simulations in full-atomic and coarse-grained representation. It was shown that palmitoylation leads to a significant decrease in the mobility of the transmembrane domain and local thickening of the bilayer, which may be important for the process of protein trimerization.

About the Authors

M. E. Bozdaganyan
Lomonosov Moscow State University; N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
Russian Federation

Leninskiye gory 1–12, Moscow, 119234; Kosygina 4, Moscow, 119991



P. S. Orekhov
Lomonosov Moscow State University; Institute of Personalized Medicine, Sechenov University
Russian Federation

Leninskiye gory 1–12, Moscow, 119234; Bolshaya Pirogovskaya 2–4, 119435 Moscow



D. S. Litvinov
Lomonosov Moscow State University
Russian Federation

Leninskiye gory 1–12, Moscow, 119234



V. N. Novoseletsky
Lomonosov Moscow State University
Russian Federation

Leninskiye gory 1–12, Moscow, 119234



References

1. Letko M., Marzi A., Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses // Nat. Microbiol. 2020. Vol. 5. N 4. P. 562–569.

2. Walls A.C., Park Y.J., Tortorici M.A., Wall A., McGuire A.T. Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein // Cell. 2020. Vol. 181. N 2. P. 281–292.e6.

3. Turoňová B., Sikora M., Schürmann C., et al. In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges // Science. 2020. Vol. 370. N 6513. P. 203–208.

4. Webb B., Sali A. Protein structure modeling with MODELLER // Structural Genomics. Methods in Molecular Biology, vol 2199 / Eds. Y.W. Chen and CP.B. Yiu. N.Y.: Humana, P. 239–255.

5. Hakansson-McReynolds S., Jiang S., Rong L., Caffrey M. Solution structure of the severe acute respiratory syndrome-coronavirus heptad repeat 2 domain in the prefusion state // J. Biol. Chem. 2006. Vol. 281. N 17. P. 11965–11971.

6. Fu Q., Shaik M.M., Cai Y., Ghantous F., Piai A., Peng H., Rits-Volloch S., Liu Z., Harrision S.C., Seaman M.S., Chen B., Chou J.J. Structure of the membrane proximal external region of HIV-1 envelope glycoprotein // Proc. Natl. Acad. Sci. U.S.A. 2018. Vol. 115. N 38. P. E8892–E8899.

7. Jo S., Kim T., Iyer V.G., Im W. CHARMMGUI: a web-based graphical user interface for CHARMM // J. Comput. Chem. 2008. Vol. 29. N 11. P. 1859–1865.

8. Woo H., Park S.J., Choi Y.K., Park T., Tanveer M., Cao Y., Kern N.R., Lee J., Yeom M.S., Croll T.I., Seok C., Im W. Developing a fully glycosylated full-length SARS-CoV-2 spike protein model in a viral membrane // J. Phys. Chem. B. 2020. Vol. 124. N 33. P. 7128–7137.

9. Abraham M.J., Murtola T., Schultz R., Pall S., Smith J.C., Hess B., Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers // SoftwareX. 2015. Vol. 1–2. P. 19–25.

10. Huang J., Rauscher S., Nawrocki G., Ran T., Feig M., de Groot B., Grubmüller H., MacKerell A.J. CHARMM36m: an improved force field for folded and intrinsically disordered proteins // Nat. Methods. 2017. Vol. 14. N 1. P. 71–73.

11. de Jong D.H., Singh G., Benett W.F.D., Arnarez C., Wassenaar T.A., Schäfer† L.V., Periole X., Tieleman D.P., Marrink S.J. Improved parameters for the Martini coarsegrained protein force field // J. Chem. Theory Comput. 2013. Vol. 9. N 1. P. 687–697.

12. Atsmon-Raz Y., Tieleman D.P. Parameterization of palmitoylated cysteine, farnesylated cysteine, geranylgeranylated cysteine, and myristoylated glycine for the Martini force field // J. Phys. Chem. B. 2017. Vol. 121. N 49. P. 11132–11143.

13. de Jong D.H., Baoukina S., Ingolfsson H.I., Marrink S.J. Martini straight: Boosting performance using a shorter cutoff and GPUs // Comput. Phys. Commun. 2016. Vol. 199. P. 1–7.

14. Gapsys V., de Groot B.L., Briones R. Computational analysis of local membrane properties // J. Comput. Aided Mol. Des. 2013. Vol. 27. N 10. P. 845–858.

15. Dev J., Park D., Fu Q., Chen J., Ha H.J., Ghantous F., Herrmann T., Chang W., Liu Z., Frey G., Seaman M.S., Chen B., Chou J.J. Structural basis for membrane anchoring of HIV-1 envelope spike // Science. 2016. Vol. 353. N 6295. P. 172–175.

16. Chiliveri S.C., Louis J.M., Ghirlando R., Baber J.L., Bax A. Tilted, uninterrupted, monomeric HIV-1 gp41 transmembrane helix from residual dipolar couplings // J. Am. Chem. Soc. 2018. Vol. 140. N 1. P. 34–37.

17. Mahajan M., Bhattacharjya S. Solution structure of pre transmembrane domain. Worldwide Protein Data Bank, 2014. DOI: 10.2210/pdb2RUN/pdb.

18. Veit M. Palmitoylation of virus proteins // Biol. Cell. 2012. Vol. 104. N 9. P. 493–515.

19. Petit C.M., Chouljenko V.N., Iyer A., Colgrove R., Farzan M., Knipe D.M., Kousoulas K.G. Palmitoylation of the cysteine-rich endodomain of the SARS-coronavirus spike glycoprotein is important for spike-mediated cell fusion // Virology. 2007. Vol. 360. N 2. P. 264–274.

20. Best R.B., Zhu X., Shim J., Lopes P.E.M., Mittal J., Feig M., MacKerell A.D. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles // J. Chem. Theory Comput. 2012. Vol. 8. N 9. P. 3257–3273.

21. Krogh A., Larsson B., von Heijine G., Sonnhammer E.L.L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes // J. Mol. Biol. 2001. Vol. 305. N 3. P. 567–580.

22. Serebryakova M.V., Kordyukova L.V., Baratova L.A., Markushin S.G. Mass spectrometric sequencing and acylation character analysis of C-terminal anchoring segment from Influenza A hemagglutinin // Eur. J. Mass Spectrom. 2006. Vol. 12. N 1. P. 51–62.

23. Fu Q., Chou J.J. A trimeric hydrophobic zipper mediates the intramembrane assembly of SARS-CoV-2 spike // bioRxiv. 2021. DOI: 10.1021/jacs.1c02394.

24. Thorp E.B., Boscarino J.A., Logan H.L., Goletz J.T., Gallagher T.M. Palmitoylations on murine coronavirus spike proteins are essential for virion assembly and infectivity // J. Virol. 2006. Vol. 80. N 3. P. 1280–1289.

25. Charollais J., Van Der Goot F.G. Palmitoylation of membrane proteins (Review) // Mol. Membr. Biol. 2009. Vol. 26. N 1. P. 55–66.


Review

For citations:


Bozdaganyan M.E., Orekhov P.S., Litvinov D.S., Novoseletsky V.N. Molecular modeling of HR2 and transmembrane domains of the SARS-CoV-2 S-protein in the prefusion state. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2021;76(3):155-162. (In Russ.)

Views: 323


ISSN 0137-0952 (Print)