Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

Influence of indole on intracellular polyamines and antibiotic susceptibility of Escherichia coli

Abstract

Small regulatory molecules such as indole and polyamines are involved in the regulation of various processes in bacteria, including the response to antibiotics. It is known that small regulatory molecules can influence each other, but there is no information on the interaction of indole and polyamines. We have shown here that indole at micromolar concentrations reduces the susceptibility of Escherichia coli to fluoroquinolone, beta-lactam and aminoglycoside antibiotics. Indole had a stronger effect on the antibiotic susceptibility of bacteria capable of synthesizing the polyamines putrescine and spermidine as compared to a polyamine-deficient isogenic strain. Exogenous indole increased intracellular level of putrescine and spermidine by 2 and 2.5 folds, respectively, and had no effect on the cadaverine level. The supplementation of cultivation media with common bacterial polyamines, putrescine, cadaverine, and spermidine, did not influence the production of indole by E. coli cells. The addition of spermine, a polyamine mainly synthesized by eukaryotes, increased the release of indole into the medium by E. coli cells (by no more than 20%). Thus, indole reduces antibiotic susceptibility of E. coli to antibiotics with different mechanisms of antibacterial action, in particular, by increasing the amount of polyamines in bacterial cells.

About the Authors

L. Y. Nesterova
Институт экологии и генетики микроорганизмов УрО РАН, Пермский федеральный исследовательский центр УрО РАН
Russian Federation


A. V. Akhova
Институт экологии и генетики микроорганизмов УрО РАН, Пермский федеральный исследовательский центр УрО РАН
Russian Federation


A. G. Tkachenko
Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Ural Brunch of the Russian Academy of Sciences
Russian Federation

Golev st. 13, Perm, 614081



References

1. Tomberlin J.K., Crippen T.L., Wu G., Griffin A.S., Wood T.K., Kilner R.M. Indole: an evolutionarily conserved influencer of behavior across kingdoms // Bioessays. 2017. Vol. 54. N 2. doi: 10.1002/bies.201600203.

2. El-Halfawy O.M., Valvano M.A. Non-genetic mechanisms communicating antibiotic resistance: rethinking strategies for antimicrobial drug design // Expert Opin. Drug. Discov. 2012. Vol. 7. N 10. P. 923–933.

3. Hu M., Zhang C., Mu Y., Shen Q., Feng Y. Indole affects biofilm formation in bacteria Indian // J. Microbiol. 2010. Vol. 50. N 4. P. 362–368.

4. Kim J., Park W. Indole: a signaling molecule or a mere metabolic byproduct that alters bacterial physiology at a high concentration? // J. Microbiol. 2015. Vol. 53. N 7. P. 421–428.

5. Lee J.H., Wood T.K., Lee J. Roles of indole as an interspecies and interkingdom signaling molecule // Trends Microbiol. 2015. Vol. 23 N. 11. P. 707–718.

6. Han T.H., Lee J.H., Cho M.H., Wood T.K., Lee J. Environmental factors affecting indole production in Escherichia coli // Res. Microbiol. 2011. Vol. 162. N 2. P. 108–116.

7. Lee H.H., Molla M.N, Cantor C.R., Collins J.J. Bacterial charity work leads to population-wide resistance // Nature. 2010. Vol. 467. N 7311. P. 82–85.

8. Zhang S., Shao Y., Zhao X., Li C., Guo M., Lv Z., Zhang W. Indole contributes to tetracycline resistance via the outer membrane protein OmpN in Vibrio splendidus // World J. Microbiol. Biotechnol. 2020. Vol. 36. N 3: 36.

9. Vega N.M., Allison K.R., Samuels A.N., Klempner M.S., Collins J.J. Salmonella typhimurium intercepts Escherichia coli signaling to enhance antibiotic tolerance // Proc. Natl. Acad. Sci. U.S.A. 2013. Vol. 110. N 35. P. 14420–14425.

10. Kojo H., Asano J., Murakawa T., Nishida M. Antibiotic resistance of indole-positive Klebsiella pneumonia // Chemotherapy. 1980. Vol. 26. N 6. P. 431–435.

11. Wang Y., Tian T., Zhang J., Jin X., Yue H., Zhang X-H., Du L., Bai F. Indole reverses intrinsic antibiotic resistance by activating a novel dual-function importer // mBio. 2019. Vol. 10. N 3: e00676-19.

12. Zhang W., Yamasaki R., Song S., Wood T.K. Interkingdom signal indole inhibits Pseudomonas aeruginosa persister cell waking // J. Appl. Microbiol. 2019. Vol. 127. N 6. P. 1768–1775.

13. Lee J.H., Kim Y.G., Gwon G., Wood T.K., Lee J. Halogenated indoles eradicate bacterial persister cells and biofilms // AMB Express. 2016. Vol. 6. N 1: 123.

14. Vega N.M., Allison K.R., Khalil A.S., Collins J.J. Signaling-mediated bacterial persister formation // Nat. Chem. Biol. 2012. Vol. 8. N 5. P. 431–433.

15. Michael A.J. Polyamines in Eukaryotes, Bacteria, and Archaea // J. Biol. Chem. 2016. Vol. 291. N 29. P. 14896–14903.

16. Gevrekci A.Ö. The roles of polyamines in microorganisms // World J. Microbiol. Biotechnol. 2017. Vol. 33. N 11: 204.

17. Igarashi K., Kashiwagi K. Polyamine modulon in Escherichia coli: genes involved in the stimulation of cell growth by polyamines // J. Biochem. 2006. Vol. 139. N 1. P. 11–16.

18. Tkachenko A.G., Akhova A.V., Shumkov M.S., Nesterova L.Yu. Polyamines reduce oxidative stress in Escherichia coli cells exposed to bactericidal antibiotics // Res. Microbiol. 2012. Vol. 163. N 2. P. 83–91.

19. Нестерова Л.Ю., Негорелова Е.В., Ткаченко А.Г. Биогенные полиамины как модуляторы активности Quorum sensing системы и биопленкообразования Vibrio harveyi // Вестн. Перм. ун-та. 2019. № 3. С. 300–308.

20. Чудинов А.А., Чудинова Л.А., Коробов В.П. Метод определения низкомолекулярных олигоаминов в различном биологическом материале // Вопр. мед. хим. 1984. № 4. С. 127–132.

21. Kim D., Sitepu I.R., Hashidokoa Y. Induction of biofilm formation in the betaproteobacterium Burkholderia unamae CK43B exposed to exogenous indole and gallic acid // Appl. Environ. Microbiol. 2013. Vol. 79. N. 16. P. 4845–4852.

22. Hirakawa H., Inazumi Y., Masaki T., Hirata T., Yamaguchi A. Indole induces the expression of multidrug exporter genes in Escherichia coli // Mol. Microbiol. 2005. Vol. 55. N 4. P. 1113–1126.

23. Delcour A.H. Outer membrane permeability and antibiotic resistance // Biochim. Biophys. Acta. 2009. Vol. 1794. N 5. P. 808–816.

24. Michael A.J. Polyamine function in archaea and bacteria // J. Biol. Chem. 2018 Vol. 293. N 48. P. 18693–18701.

25. Tkachenko A.G., Kashevarova N.M., Karavaeva E.A., Shumkov M.S. Putrescine controls the formation of Escherichia coli persister cells tolerant to aminoglycoside netilmicin // FEMS Microbiol. Lett. 2014. Vol. 361. N 1. P. 25–33.


Review

For citations:


Nesterova L.Y., Akhova A.V., Tkachenko A.G. Influence of indole on intracellular polyamines and antibiotic susceptibility of Escherichia coli. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2021;76(4):219-224. (In Russ.)

Views: 357


ISSN 0137-0952 (Print)