Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

Toxic effects of microplastics on culture Scenedesmus quadricauda: interactions between microplastics and algae

Abstract

The number of microplastic particles (MPs) in the environment is constantly increasing as a result of the decay of plastic waste, the incineration of which is associated with air emissions and the concentration of toxic combustion products in ash residues. Although numerous researchers have studied the effects of MPs on living organisms, only a small part of the published data is devoted to the study of the long-term toxic effects MPs and combustion products of plastic on phytoplankton organisms. The effect of different types of MPs and plastic incineration ash on the structural and functional growth parameters of a green microalga Scenedesmus quadricauda culture, used as a test object, was studied in a chronic experiment lasting 21 days. The development of the species was studied with the addition of 5 types of weathered MPs samples, obtained from macroplastics, collected in the supralittoral of the Barents Sea and one unweathered control sample at a concentration of 3 mg/L. In terms of changes in the number of Scenedesmus quadricauda cells, the following toxicity series was obtained in descending order: PU (polyurethane foam, weathered) > HDPE (food package, white, weathered) > HDPE (food package, red, weathered)> EPS (packaging material, weathered) > EPS (packaging material, unweathered) > PP (ship rope, weathered). In terms of the efficiency of photosynthesis (maximum quantum yield of PSII photochemistry (FV/FM)), polyurethane foam was found to be non-toxic, while other samples of MPs had a weak toxic effect. The effect of MPs on the culture caused a mosaic response, assessed by different parameters of the test object state: a strong inhibition of culture growth (with the addition of polyurethane foam) can be accompanied by a significant increase in thiobarbituric acid reactive substances (TBARS) in microalgal cells, while photosynthesis efficiency may not change. The toxicity of the residual ash obtained from the incineration of a mixture of weathered macroplastics was significantly higher than the toxicity of microplastics. Residual ash was studied at concentrations of 0.01, 0.1, 1, 10, 100 and 1000 mg/L and the toxicity was detected in terms of the change in the cell number only at a concentration of 1000 mg/L, in terms of the photosynthesis efficiency – at 0.01 mg/L, and by the change in the amount of TBARS in microalgal cells – at 0.1 mg/L and above.

About the Authors

A. M. Lazareva
Lomonosov Moscow State University
Russian Federation

Biological Faculty

Leninskiye Gory, 1–12, 119234, Moscow



V. I. Ipatova
Lomonosov Moscow State University
Russian Federation

Biological Faculty

Leninskiye Gory, 1–12, 119234, Moscow



O. V. Il’ina
Lomonosov Moscow State University
Russian Federation

Biological Faculty

Leninskiye Gory, 1–12, 119234, Moscow



D. A. Todorenko
Lomonosov Moscow State University
Russian Federation

Biological Faculty

Leninskiye Gory, 1–12, 119234, Moscow



D. N. Matorin
Lomonosov Moscow State University
Russian Federation

Biological Faculty

Leninskiye Gory, 1–12, 119234, Moscow



A. A. Baizhumanov
Lomonosov Moscow State University
Russian Federation

Biological Faculty

Leninskiye Gory, 1–12, 119234, Moscow



References

1. Cau A., Avio C.G., Dessì C., Moccia D., Pusceddu A., Regoli F., Rita Cannas R., Follesa M.C. Benthic crustacean digestion can modulate the environmental fate of microplastics in the deep sea // Environ. Sci. Technol. 2020. Vol. 54. N 8. P. 4886–4892.

2. Debroas D., Mone A., Ter Halle A. Plastics in the North Atlantic garbage patch: a boat-microbe for hitchhikers and plastic degraders // Sci. Total Environ. 2019. Vol. 599–600. P. 1222–1232.

3. Michels J., Stippkugel A., Lenz M., Wirtz K., Engel A. Rapid aggregation of biofilm-covered microplastics with marine biogenic particles // Proc. Royal Soc. B: Biol. Sci. 2018. Vol. 285. N 1885: 20181203.

4. Rosato A., Barone M., Negroni A., Brigidi P., Fava F., Xu P., Candela M., Zanaroli G. Microbial colonization of different microplastic types and biotransformation of sorbed PCBs by a marine anaerobic bacterial community // Sci. Total Environ. 2020. Vol. 705: 135790.

5. Alimi O.S., Farner Budarz J., Hernandez L.M., Tufenkji N. Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport // Environ. Sci. Technol. 2018. Vol. 52. N 4. P. 1704–1724.

6. Prata J.C., da Costa J.P., Lopes I., Duarte A.C., Rocha-Santos T. Effects of microplastics on microalgae populations: A critical review // Sci. Total Environ. 2019. Vol. 665. P. 400–405.

7. Besseling E., Wang B., Lürling M., Koelmans A.A. Nanoplastic affects growth of S. obliquus and reproduction of D. magna // Environ. Sci. Technol. 2014. Vol. 48. N 20. P. 12336–12343.

8. Bergami E., Pugnalini S., Vannuccini M.L., Manfra L., Faleri C., Savorelli F., Dawson K.A., Corsi I. Long-term toxicity of surface-charged polystyrene nanoplastics to marine planktonic species Dunaliella tertiolecta and Artemia franciscana // Aquat. Toxicol. 2017. Vol. 189. P. 159–169.

9. Yokota K., Waterfield H., Hastings C., Davidson E., Kwietniewski E., Wells B. Finding the missing piece of the aquatic plastic pollution puzzle: interaction between primary producers and microplastics // Limnol. Oceanogr. Lett. 2017. Vol. 2. N 4. P. 91–104.

10. Zhang C., Chen X., Wang J., Tan L. Toxic effects of microplastics on marine microalgae Skeletonema costatum: interactions between microplastics and algae // Environ. Pollut. 2017. Vol. 220. Pt. B. P. 1282–1288.

11. Mao Y., Ai H., Chen Y., Zhang Z., Zeng P., Kang L., Li W., Gu W., He Q., Li H. Phytoplankton response to polystyrene microplastics: perspective from an entire growth period // Chemosphere. 2018. Vol. 208. P. 59–68.

12. Lagarde F., Oliver O., Zanella M., Daniel P., Hiard S., Caruso A. Microplastic interactions with freshwater microalgae: hetero-aggreagation and changes in plastic density appear strongly dependent on polymer type // Environ. Pollut. 2016. Vol. 215. P. 331–339.

13. Bhattacharya P., Lin S., Turner J.P., Ke P.C. Physical adsorption of charges plastic nanoparticles affect algal photosynthesis // J. Phys. Chem. 2010. Vol. 114. N 39. P. 16556–16561.

14. Chae Y., Kim D., Kim S.W., An Y.J. Trophic transfer and individual impact of nanosized polystyrene in a four-species freshwater food chain // Sci. Rep. 2018. Vol. 8: 284.

15. Long M., Paul-Pont I., Hégaret H., Moriceau B., Lambert C., Huvet A., Soudant P. Interactions between polystyrene microplastics and marine phytoplankton lead to species-specific hetero-aggregation // Environ. Pollut. 2017. Vol. 228. P. 454–463.

16. Nolte T.M., Hartmann N.B., Kleijn J.M., Garnæs J., van de Meent D., Hendriks A.J., Baun A. The toxicity of plastic nanoparticles to green algae as influenced by surface modification, medium hardness and cellular adsorption // Aquat. Toxicol. 2017. Vol. 183. P. 11–20.

17. Suaria G., Avio C.G., Mineo A., Lattin G.L., Magaldi M.G., Belmonte G., Moore C.J., Regoli R., Aliani S. The Mediterranean plastic soup: synthetic polymers in Mediterranean surface waters // Sci. Rep. 2016. Vol. 6: 37551.

18. Nakao T., Aozasa O., Ohta S., Miyata H. Formation of toxic chemicals including dioxin-related compounds by combustion from a small home waste incinerator // Chemosphere. 2006. Vol. 62. N 3. P. 459–468.

19. Valavanidis A., Iliopoulos N., Gotsis G., Fiotakis K. Persistent free radicals, heavy metals and PAHs generated in particulate soot emissions and residue ash from controlled combustion of common types of plastic // J. Hazard. Mater. 2008. Vol. 156. N 1–3. P. 277–284.

20. Strasser R.J., Tsimilli-Michael M., Srivasta A. Analysis of the chlorophyll a fluorescence transient // Chlorophyll a fluorescence. Advances in photosynthesis and respiration, vol. 19 / Eds. G. Papageorgiou and R. Govindjee. Dordrecht: Springer, 2004. P. 321–362.

21. Stewart R.R.C., Bewley J.D. Lipid peroxidation associated with accelerated aging of soybean axes // Plant Physiol. 1980. Vol. 65. N 2. P. 245–248.

22. Lithner D., Larsson A., Dave G. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition // Sci. Total Environ. 2011. Vol. 409. N 18. P. 3309–3324.

23. Ogata Y., Takada H., Mizukawa K., et al. International pellet watch: Global monitoring of persistent organic pollutants (POPs) in coastal waters. 1. Initial phase data on PCBs, DDTs, and HCHs // Mar. Pollut. Bull. 2009. Vol. 58. N 10. P. 1437–1446.

24. Rochman C.M. The complex mixture, fate and toxicity of chemicals associated with plastic debris in the marine environment // Marine anthropogenic litter / Eds. M. Bergmann, L. Gutow, and M. Klages. Springer, 2015. P. 117–140.

25. Prokhotskaya V.Yu., Veselovski V.A., Veselova T.V., Dmitrieva A.G., Artyukhova V.I. On the nature of the threephase response of Scenedesmus quadricauda populations to the action of imazalil sulfate // Russ. J. Plant Physiol. 2000. Vol. 47. N 6. P. 772–778.

26. Подколзин А.А., Гуревич К.Г. Действие биологически активных веществ в малых дозах. М.: КМК, 2002. 170 с.

27. Бурлакова Е.Б., Конрадов А.А., Мальцева Е.Л. Сверхслабые воздействия химических соединений и физических факторов на биологические системы // Биофизика. 2004. Т. 49. № 3. С. 551–564.

28. Дмитриева А.Г., Ипатова (Артюхова) В.И., Кожанова О.Н., Дронина Н.Л., Желтухин Г.О., Крупина М.В. Реакция Elodea canadensis на загрязнение хромом среды обитания // Вестн. Моск. ун-та. Сер. 16. Биол. 2006. № 2. С. 17–24.

29. Ипатова В.И., Дмитриева А.Г., Филенко О.Ф., Дрозденко Т.В. О некоторых особенностях физиологической гетерогенности популяции Scenedesmus quadricauda (Turp.) Breb. в присутствии низких концентраций металлов // Токсикол. вестн. 2018. № 2. с. 34–43.


Review

For citations:


Lazareva A.M., Ipatova V.I., Il’ina O.V., Todorenko D.A., Matorin D.N., Baizhumanov A.A. Toxic effects of microplastics on culture Scenedesmus quadricauda: interactions between microplastics and algae. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2021;76(4):225-233. (In Russ.)

Views: 475


ISSN 0137-0952 (Print)