Features of using 2,6-dichlorophenolindophenol as an electron acceptor in photosynthesis studies
Abstract
2,6-dichlorophenolindophenol (DCPIP) is a redox indicator widely used to study electron transfer reactions in biological systems, including in the process of photosynthesis. DCPIP exists in solution in two forms – “pink” and “blue,” which transform into each other during protonation/deprotonation. Upon reduction, the DCPIP is discolored. We investigated the pH-dependence of DCPIP reduction rate in the presence of the photosystem II (PSII) at two wavelengths – 522 nm (isobestic DCPIP point) and 600 nm (near the absorption maximum of the deprotonated “blue” form). It was shown that in experiments with change of the pH medium, measuring at a wavelength of 600 nm requires corrections related to changing the ratio of the “blue” and “pink” forms of the acceptor, as well as using the pK parameter of this acceptor, whose values рК vary in various sources, to calculate the DCPIP reduction rate. Measurements at the isobestic point (522 nm) avoid these complexities. We also found that the maximum at the pH-dependence of the DCPIP reduction rate by PSII shifted by about 1 unit to the acidic region relative to the maximum of the acceptor pair 2,6-dichloro-p-benzoquinone – potassium ferricyanide reduction rate pH-dependence. This shift may be due to the lower availability of the QB site on the acceptor side PSII for the charged deprotonated DCPIP form compared to the uncharged protonated form.
Keywords
About the Authors
A. V. LoktyushkinRussian Federation
Department of Biophysics, School of Biology
Leninskiye gory 1–12, Moscow 119234
E. R. Lovyagina
Russian Federation
Department of Biophysics, School of Biology
Leninskiye gory 1–12, Moscow 119234
B. K. Semin
Russian Federation
Department of Biophysics, School of Biology
Leninskiye gory 1–12, Moscow 119234
References
1. Wiwczar J., Brudvig G.W. Alternative electron acceptors for photosystem II // Photosynthesis: structures, mechanisms, and applications / Eds. H. Hou, M. Najafpour, G. Moore, and S. Allakhverdiev. Cham: Springer, 2017. P. 51−66.
2. Vernon L.P., Shaw E.R. Photoreduction of 2,6-dichlorophenolindophenol by diphenylcarbazide: a photosystem 2 reaction catalyzed by tris-washed chloroplasts and subchloroplast fragments // Plant Physiol. 1969. Vol. 44. N 11. P. 1645−1649.
3. Chernev P., Fischer S., Hoffmann J., Oliver N., Assunção R., Yu B., Burnap R.L., Zaharieva I., Nürnberg D.J., Haumann M., Dau H. Light-driven formation of manganese oxide by today’s photosystem II supports evolutionarily ancient manganese-oxidizing photosynthesis // Nat. Commun. 2020. Vol. 11. N 1: 6110.
4. Lovyagina E.R., Loktyushkin A.V., Semin B.K. Effective binding of Tb3+ and La3+ cations on the donor side of Mn-depleted photosystem II // J. Biol. Inorg. Chem. 2021. Vol. 26. N 1. P. 1−11.
5. Eröss K., Svehla G., Erdey L. The use of 2,6-dichlorophenolindophenol as indicator in acid-base titrations // Anal. Chim. Acta. 1964. Vol. 31. P. 246−250.
6. Berthold D.A., Babcock G.T., Yocum C.F. A highly resolved, oxygen evolving photosystem II preparation from spinach thylakoid membranes: EPR and electron transport properties // FEBS Lett. 1981. Vol. 134. N 2. P. 231−234.
7. Loktyushkin A.V., Lovyagina E.R., Semin B.K. Interaction of terbium cations with the donor side of photosystem II in higher plants // Moscow Univ. Biol. Sci. Bull. 2019. Vol. 74. N 2. P. 81–85.
8. Dunahay T.G., Staechelin L.A., Seibert M., Ogilvie P.D., Berg S.P. Structural biochemical and biophysical characterization of four oxygen-evolving photosystem 2 preparations from spinach // Biochim. Biophys. Acta Bioenerg. 1984. Vol. 764. N 2. P. 179−193.
9. Kurreck J., Seeliger A.G., Reifarth F., Karge M., Renger G. (1995). Reconstitution of the endogenous plastoquinone pool in photosystem II (PS II) membrane fragments, inside-out-vesicles, and PS II core complexes from spinach // Biochemistry. 1995. Vol. 34. N 48. P. 15721−15731.
10. Porra R.J., Thompson W.A., Kriedemann P.E. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy // Biochim. Biophys. Acta Bioenerg. 1989. Vol. 975. N 3. P. 384–394.
11. Tonomura B., Nakatani H., Ohnishi M., Yamaguchi-Ito J., Hiromi K. Test reactions for a stopped-flow apparatus: Reduction of 2,6-dichlorophenolindophenol and potassium ferricyanide by L-ascorbic acid // Anal. Biochem. 1978. Vol. 84. N 2. P. 370−383.
12. Petrova A., Mamedov M., Ivanov B., Semenov A., Kozuleva M. Effect of artificial redox mediators on the photoinduced oxygen reduction by photosystem I complexes // Photosyn. Res. 2018. Vol. 137. N 3. P. 421−429.
13. Jahn B., Jonasson N.S., Hu H., Singer H., Pol A., Good N.M., Op den Camp H.J.M., Martinez-Gomez N.C., Daumann L.J. Understanding the chemistry of the artificial electron acceptors PES, PMS, DCPIP and Wurster’s Blue in methanol dehydrogenase assays // J. Biol. Inorg. Chem. 2020. Vol. 25. N 2. P. 199−212.
14. Armstrong J.M.D. The molar extinction coefficient of 2, 6-dichlorophenol indophenol // Biochim. Biophys. Acta Gen. Subj. 1964. Vol. 86. N 1. P. 194−197.
15. Izawa S. Acceptors and donors and chloroplast electron transport // Methods in Enzymology. Photosynthesis and Nitrogen Fixation – Part C, vol. 69 / Eds. A. San Pietro. Cambridge: Academic Press, 1980. P. 413−434.
16. Schlodder E., Meyer B. pH dependence of oxygen evolution and reduction kinetics of photooxidized chlorophyll aII (P-680) in Photosystem II particles from Synechococcus sp // Biochim. Biophys. Acta Bioenerg. 1987. Vol. 890. N 1. P. 23−31.
17. Vass I., Styring S. pH-dependent charge equilibria between tyrosine-D and the S states in photosystem II. Estimation of relative midpoint redox potentials // Biochemistry. 1991. Vol. 30. N 3. P. 830−839.
18. Haddy A., Hatchell J.A., Kimel R.A., Thomas R. Azide as a competitor of chloride in oxygen evolution by photosystem II // Biochemistry. 1999. Vol. 38. N 19. P. 6104−6110.
19. Schiller H., Dau H. Preparation protocols for high-activity photosystem II membrane particles of green algae and higher plants, pH dependence of oxygen evolution and comparison of the S2-state multiline signal by X-band EPR spectroscopy // J. Photochem. Photobiol. B. 2000. Vol. 55. N 2−3. P. 138−144.
20. Semin B.K., Davletschina L.N., Aleksandrov A.Yu., Lanchinskaya V.Yu., Novakova A.A., Ivanov I.I. pH-dependence of iron binding to the donor side of photosystem II // Biochemistry (Mosc.). 2004. Vol. 69. N 3. P. 410–419.
21. Damoder R., Dismukes G.C. pH dependence of the multiline, manganese EPR signal for the ‘S2’state in PS II particles: Absence of proton release during the S1 → S2 electron transfer step of the oxygen evolving system // FEBS Lett. 1984. Vol. 174. N 1. P. 157−161.
22. Semin B.K., Davletshina L.N., Timofeev K.N., Ivanov I.I., Rubin A.B., Seibert M. Production of reactive oxygen species in decoupled, Ca2+-depleted PSII and their use in assigning a function to chloride on both sides of PSII // Photosyn. Res. 2013. Vol. 117. N 1. P. 385−399.
23. Ono T., Inoue Y. Discrete extraction of the Ca atom functional for O2 evolution in higher plant photosystem II by a simple low pH treatment // FEBS Lett. 1988. Vol. 227. N 2. P. 147−152.
24. Zharmukhamedov S.K., Allakhverdiev S.I. Chemical inhibitors of photosystem II // Russian J. Plant Physiol. 2021. Vol. 68. N 2. P. 212−227.
Review
For citations:
Loktyushkin A.V., Lovyagina E.R., Semin B.K. Features of using 2,6-dichlorophenolindophenol as an electron acceptor in photosynthesis studies. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2021;76(4):234-240. (In Russ.)