Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

Actinobiota in the rhizosphere of transgenic tobacco plants with increased tolerance to salt stress

Abstract

Assessment of the safety of genetically modified plants for the microbial community of the soil and the environment is important due to the increase in the diversity of genes involved in the creation of genotypes of crops resistant to edaphic stress. Genetically engineered tobacco (Nicotiana tabacum L.) with the ability to synthesis glycinebetaine in chloroplasts was established by introducing the соdA gene for choline oxidase from soil bacteria Arthrobacter globiformis. Synthesis of glycinebetaine helps to stabilize cells under salt stress. Plants wild type (variety Samsun) and the CodA 38 transgenic line were grown in pot culture on a normal soil background and under conditions of salt stress caused by 150 mM NaCl. The abundance, diversity and structure of actinomycete complexes were compared at the generic and species level (Streptomyces) using nonparametric rank method of statistical analysis. The obtained data indicate the absence of significant (p = 0.95) changes in the number and taxonomic structure of actinobiota, frequency of occurrence of streptomyces-antagonists of phytopathogenic fungi and bacteria, streptomyces-cellulolytics in the rhizosphere of transformant plants with genetically increased resistance to salt stress. It is concluded that it is necessary to continue research on the specific reactions of soil and rhizosphere microorganisms to various categories of genetically modified plants.

About the Authors

I. G. Shirokikh
Federal Agricultural Research Center of North-East named N.V. Rudnitsky
Russian Federation

Lenina ul. 166a, Kirov, 610007



Ya. I. Nazarova
Federal Agricultural Research Center of North-East named N.V. Rudnitsky
Russian Federation

Lenina ul. 166a, Kirov, 610007



References

1. Machado R.M.A., Serralheiro R.P. Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization // Horticulturae. 2017. Vol. 3. N 2: 30.

2. Pimentel D., Berger B., Filiberto D., Newton M., Wolfe B., Karabinakis E., Clark S., Poon E., Abbett E., Nandaopal S. Water resources: Agricultural and environmental issues // BioScience. 2004. Vol. 54. N 10. P. 909–918.

3. Singh A. Soil salinization management for sustainable development: A review // J. Environ. Manage. 2021. Vol. 277: 111383.

4. Butcher K., Wick A.F., DeSutter T., Chatterjee A., Harmon J. Soil salinity: a threat to global food security // J. Agron. 2016. Vol. 108. N 6. P. 2189–2200.

5. Kolodyazhnaya Y.S., Kutsokon N.K., Levenko B.A., Syutikova O.S., Rakhmetov D.B., Kochetov A.V. Transgenic plants tolerant to abiotic stresses // Cytol. Genet. 2009. Vol. 43. N 2. P. 132–149.

6. Reguera M., Peleg Z., Blumwald E. Targeting metabolic pathways for genetic engineering abiotic stress-tolerance in crops // Biochim. Biophys. Acta Gene Regul. Mech. 2012. Vol. 1819. N 2. P. 186–194.

7. Negrão S., Schmöckel S.M., Tester M. Evaluating physiological responses of plants to salinity stress // Ann. Bot. 2017. Vol. 119. N 1. Р. 1–11.

8. Liang C., Zhang X.Y., Luo Y., Wang G.P., Zou Q., Wang W. Overaccumulation of glycine betaine alleviates the negative effects of salt stress in wheat // Russ. J. Plant Physiol. 2009. Vol. 56. N 3. P. 370–376.

9. Goel D., Singh A.K., Yadav V., Babbar S.B., Murata N., Bansal K.C. Transformation of tomato with a bacterial codA gene enhances tolerance to salt and water stresses // Russ. J. Plant Physiol. 2011. Vol. 168. N 11. P. 1286–1294.

10. Tran N.H.T., Oguchi T., Matsunaga E., Kawaoka A., Watanabe K.N., Kikuchi A. Transcriptional enhancement of a bacterial choline oxidase A gene by an HSP terminator improves the glycine betaine production and salinity stress tolerance of Eucalyptus camaldulensis trees // Plant Biotechnol. (Tokyo). 2018. Vol. 35. N 3. P. 215–224.

11. Ladics G.S., Bartholomaeus A., Bregitzer P., Doerrer N.G., Gray A., Holzhauser T., Parrott W. Genetic basis and detection of unintended effects in genetically modified crop plants// Transgenic Res. 2015. Vol. 24. N 4. P. 587–603.

12. Shrivastava P., Kumar R. Actinobacteria: Ecofriendly candidates for control of plant diseases in a sustainable manner // New and future developments in microbial biotechnology and bioengineering. Actinobacteria: Diversity and biotechnological applications / Eds. B.P. Singh, V.K. Gupta, and A.K. Passari. Elsevier, 2018. P. 79–91.

13. Vurukonda S.S.K.P., Giovanardi D., Stefani E. Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes // Int. J. Mol. Sci. 2018. Vol. 19. N 4: 952.

14. Hamedi J., Mohammadipanah F. Biotechnological application and taxonomical distribution of plant growth promoting actinobacteria// J. Ind. Microbiol. Biotechnol. 2015. Vol. 42. N 2. P. 157–171.

15. Murachige T., Skoog F. A revised medium for rapid growth and bioаssays with tobacco tissue // Physiol. Plant. 1962. Vol. 15. N 3. Р. 473–497.

16. Кауричев И.С., Ганжара Н.Ф., Гречин И.П. Практикум по почвоведению. М.: Колос, 1980. 298 с.

17. Qiao G., Lin S., Xie L., Zhuo R. Over-expression of the codA gene by Rd29A promoter improves salt tolerance in Nicotiana tabacum // Pak. J. Bot. 2013. Vol. 45. N 3. P. 821–827.

18. Гаузе Г.Ф., Преображенская Т.П., Свешникова М.А., Терехова Л.П., Максимова Т.С. Определитель актиномицетов. Роды Sreptomyces, Streptoverticillium, Chainia. М.: Наука, 1983. 248 с.

19. Teather R.M., Wood P.J. Use of Congo redpolysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen // Appl. Environ. Microbiol. 1982. Vol. 43. N 4. P. 777–780.

20. Labed D.P., Dunlap C.A., Rong X., Huang Y., Doroghazi J.R., Ju K.S., Metcalf W.W. Phylogenetic relationships in the family Streptomycetaceae using multilocus sequence analysis// Antonie Van Leeuwenhoek. 2017. Vol. 110. N 4. P. 563–583.

21. Subramaniam G., Thakur V., Saxena R.K., Vadlamudi S., Purohit S., Kumar V., Varshney R.K. Complete genome sequence of sixteen plant growth promoting Streptomyces strains // Sci. Rep. 2020. Vol. 10. N 1: 10294.

22. Shirokikh I.G., Zenova G.M., Merzaeva O.V., Lapygina E. V., Batalova G.A., Lysak L.V. Actinomycetes in the prokaryotic complex of the rhizosphere of oats in a soddy-podzolic soil // Eurasian Soil Sci. 2007. Vol. 40. N 2. P. 158–162.

23. Kremer R.J., Means N.E. Glyphosate and glyphosate-resistant crop interactions with rhizosphere microorganisms // Eur. J. Agron. 2009. Vol. 31. N 3. P. 153–161.

24. Conner A.J., Glare T.R., Nap J.P. The release of genetically modified crops into the environment: Part II. Overview of ecological risk assessment // Plant J. 2003. Vol. 33. N. 1. P. 19–46.

25. Гулевич А.А., Куренина Л.В., Баранова Е.Н. Использование системы таргетинга ферментов Fe-зависимой супероксиддисмутазы и холиноксидазы в хлоропласт как стратегия эффективной защиты растений от абиотических стрессов// Росс. с.-х. наука. 2018. № 1. С. 7–12.


Review

For citations:


Shirokikh I.G., Nazarova Ya.I. Actinobiota in the rhizosphere of transgenic tobacco plants with increased tolerance to salt stress. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2021;76(4):258-265. (In Russ.)

Views: 244


ISSN 0137-0952 (Print)