Preview

Вестник Московского университета. Серия 16. Биология

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Зимний покой древесных растений и его неинвазивный мониторинг

Полный текст:

Аннотация

В состоянии покоя (dormancy) многолетние растения – обитатели регионов с выраженной сезонностью климата – могут переживать длительные периоды неблагоприятных условий. Выделяют периоды предварительного, физиологического и вынужденного покоя. В период предварительного покоя завершаются генетические, физиолого-биохимические и морфологические перестройки, увеличивающие стресс-толерантность растения. Физиологический или глубокий покой характеризуется неспособностью меристем к возобновлению деления клеток даже в благоприятных условиях. Под действием сигналов окружающей среды растения переходят от глубокого покоя к вынужденному, в котором деление клеток и рост сдерживается неблагоприятными условиями среды. Участившиеся климатические флуктуации приводят к аномальному выходу из покоя, повышая риск повреждения растений, особенно культурных, неблагоприятными факторами среды. В этой связи важны методы неинвазивного объективного мониторинга состояния покоя растений в реальном времени. Исследования связи между статусом покоя и функционированием фотосинтетического аппарата растений привели к разработке методов мониторинга состояния древесных растений путем регистрации переменной флуоресценции хлорофилла хвои и эндодермы коры их побегов. В обзоре кратко суммированы современные представления о механизме индукции состояния покоя и выхода из него. Приводится анализ функционирования и регуляции фотосинтетического аппарата в покое, связи между амплитудно-кинетической характеристикой индукции флуоресценции хлорофилла и глубиной покоя многолетних растений. Обсуждаются проблемы интерпретации сигналов флуоресценции хлорофилла в контексте мониторинга покоя, а также возможности практического использования этого подхода.

Об авторах

А. Е. Соловченко
Кафедра биоинженерии, биологический факультет, Московский государственный университет имени М.В. Ломоносова; Институт естествознания, Тамбовский государственный университет имени Г.Р. Державина
Россия

 докт. биол. наук, проф.

Тел.: 8-495-939-25-87

 Россия, 119234, г. Москва, Ленинские горы, д. 1, стр. 12 

 Россия, 392000, г. Тамбов, ул. Интернациональная, д. 33 



Е. Н. Ткачев
Федеральный научный центр имени И.В. Мичурина
Россия

 канд. с.-х. наук, ст. науч. сотр.

Тел.: 8-47545-2-07-61

 Россия, 393760, г. Мичуринск, ул. Мичурина, д. 30 



Е. М. Цуканова
Федеральный научный центр имени И.В. Мичурина
Россия

 докт. с.-х. наук, вед. науч. сотр.

Тел.: 8-47545-2-07-61;

 Россия, 393760, г. Мичуринск, ул. Мичурина, д. 30 



Б. М. Шурыгин
Кафедра биоинженерии, биологический факультет, Московский государственный университет имени М.В. Ломоносова
Россия

 вед. инж.

Тел.: 8-495-939-25-87

 Россия, 119234, г. Москва, Ленинские горы, д. 1, стр. 12 



С. С. Хрущев
Кафедра биофизики, биологический факультет, Московский государственный университет имени М.В. Ломоносова
Россия

 канд. биол. наук, ст. науч. сотр.

Тел.: 8-495-939-51-50

 Россия, 119234, г. Москва, Ленинские горы, д. 1, стр. 12 



И. В. Конюхов
Кафедра биофизики, биологический факультет, Московский государственный университет имени М.В. Ломоносова
Россия

 канд. биол. наук, ст. науч. сотр.

Тел.: 8-495-939-51-50 

 Россия, 119234, г. Москва, Ленинские горы, д. 1, стр. 12 



В. В. Птушенко
Научно-исследовательский институт физико-химической биологии им. А.Н. Белозерского, Московский государственный университет имени М.В. Ломоносова; Институт биохимической физики имени Н.М. Эмануэля, Российская академия наук
Россия

 канд. физ.-мат. наук, ст. науч. сотр.

Тел.: 8-495-939-51-50

 Россия, 119234, г. Москва, Ленинские горы, д. 1, стр. 40 

 Россия, 119334, Москва, ул. Косыгина, д. 4 



Список литературы

1. Withers P., Cooper C. Dormancy // Encyclopedia of ecology, vol. 3 / Ed. B.D. Fath. Elsevier, 2018. P. 309–314.

2. Генкель П.А., Окнина Е.З. О физиологии состояния покоя и способах его диагностики // Физиология состояния покоя у растений / Под. ред. А. Прокофьева. М.: Наука, 1968. С. 29–54.

3. Нестеров Я.С. Период покоя плодовых культур. М.: Сельхозиздат, 1962. 152 с.

4. Campoy J.A., Ruiz D., Egea J. Dormancy in temperate fruit trees in a global warming context: a review // Sci. Hort. 2011. Vol. 130. N 2. P 357–372.

5. Luedeling E. Climate change impacts on winter chill for temperate fruit and nut production: A review // Sci. Hort. 2012. Vol. 144. N 6. P. 218–229.

6. Туманов И.И. Физиология закаливания и морозостойкости растений. М.: Наука, 1979. 352 с.

7. Considine M.J., Considine J.A. On the language and physiology of dormancy and quiescence in plants // J. Exp. Bot. 2016. Vol. 67. N 11. P. 3189–3203.

8. Rohde A., Bhalerao R.P. Plant dormancy in the perennial context // Trends Plant. Sci. 2007. Vol. 12. N 5. P. 217–223.

9. Bewley J.D. Seed germination and dormancy // The Plant Cell. 1997. Vol. 9. N 7. P. 1055–1066.

10. Allona I., Ramos A., Ibáñez C., Contreras A., Casado R., Aragoncillo C. Molecular control of winter dormancy establishment in trees: a review // Span. J. Agric. Res. 2008. Vol. 6. P. 201–210.

11. Saito T., Tuan P.A., Katsumi-Horigane A., Bai S., Ito A., Sekiyama Y., Ono H., Moriguchi T. Development of flower buds in the Japanese pear (Pyrus pyrifolia) from late autumn to early spring // Tree Physiol. 2015. Vol. 35. N 6. P. 653–662.

12. Arora R., Rowland L.J., Tanino K. Induction and release of bud dormancy in woody perennials: a science comes of age // HortScience. 2003. Vol. 38. N 5. P. 911–921.

13. Yu J., Conrad A.O., Decroocq V., Zhebentyayeva T., Williams D.E., Bennett D., Roch G., Audergon J.-M., Dardick C., Liu Z., Abbott A.G., Staton M.E. Distinctive gene expression patterns define endodormancy to ecodormancy transition in apricot and peach // Front. Plant Sci. 2020. Vol. 11: 180.

14. Yamane H., Wada M., Honda C., Matsuura T., Ikeda Y., Hirayama T., Osako Y., Gao-Takai M., Kojima M., Sakakibara H. Overexpression of Prunus DAM6 inhibits growth represses bud break competency of dormant buds and delays bud outgrowth in apple plants // PloS One. 2019. Vol. 14. N 4: e0214788.

15. Moser M., Asquini E., Miolli G.V., Weigl K., Hanke M.-V., Flachowsky H., Si-Ammour A. The MADSbox gene MdDAM1 controls growth cessation and bud dormancy in apple // Front. Plant Sci. 2020. Vol. 11: 1003.

16. Maurya J.P., Bhalerao R.P. Photoperiod- and temperature-mediated control of growth cessation and

17. dormancy in trees: a molecular perspective // Ann. Bot. 2017. Vol. 120. N 3. P. 351–360.

18. Demidchik V.V., Shashko A.Y., Bandarenka U.Y., Smolikova G.N., Przhevalskaya D.A., Charnysh M.A., Pozhvanov G.A., Barkosvkyi A.V., Smolich I.I., Sokolik A.I., Yu M., Medvedev S.S. Plant phenomics: fundamental bases software and hardware platforms and machine learning // Russ. J. Plant Physiol. 2020. Vol. 67. N 3. P. 397–412.

19. McAusland L., Atkinson J.A., Lawson T., Murchie E.H. High throughput procedure utilising chlorophyll fluorescence imaging to phenotype dynamic photosynthesis and photoprotection in leaves under controlled gaseous conditions // Plant Meth. 2019. Vol. 15: 109.

20. Jin X., Zarco-Tejada P., Schmidhalter U., Reynolds M.P., Hawkesford M.J., Varshney R.K., Yang T., Nie C., Li Z., Ming B., Xiao Y., Xie Y., Li. S. High-throughput estimation of crop traits: a review of ground and aerial phenotyping platforms // IEEE Geosci. Remote Sens. Mag. 2020. Vol. 9. N 1. P. 200–231.

21. Watt M., Fiorani F., Usadel B., Rascher U., Muller O., Schurr U. Phenotyping: new windows into the plant for breeders // Annu. Rev. Plant Biol. 2020. Vol. 71. P. 689–712.

22. Alekseev A., Matorin D., Osipov V., Venediktov P. Investigation of the photosynthetic activity of bark phelloderm of arboreous plants using the fluorescent method // Moscow Univ. Biol. Sci. Bull. 2007. Vol. 62. N 4. P. 164–170.

23. Tikhonov K.G., Khristin M.S., Klimov V.V.. Sundireva M.A., Kreslavski V.D., Sidorov R.A., Tsidendambayev V.D., Savchenko T.V. Structural and functional characteristics of photosynthetic apparatus of chlorophyll-containing grape vine tissue // Russ. J. Plant Physiol. 2017. Vol. 64. N 1. P. 73–82.

24. Perks M.P., Monaghan S., O’Reilly C., Osborne B.A., Mitchell D.T. Chlorophyll fluorescence characteristics performance and survival of freshly lifted and cold stored Douglas fir seedlings // Ann. Forest Sci. 2001. Vol. 58. N 3. P. 225–235.

25. Samish R. Dormancy in woody plants // Annu. Rev. Plant Physiol. 1954. Vol. 5. P. 183–204.

26. Ritchie G.A. Effect of freezer storage on bud dormancy release in Douglas-fir seedlings // Can. J. Forest Res. 1984. Vol. 14. N 2. P. 186–190.

27. Colombo S., Raitanen E. Frost hardening in white cedar container seedlings exposed to intermittent short days and cold temperatures // For. Chron. 1991. Vol. 67. N 5. P. 542–544.

28. Heide O., Prestrud A. Low temperature but not photoperiod controls growth cessation and dormancy induction and release in apple and pear // Tree Physiol. 2005. Vol. 25. N 1. P. 109–114.

29. Heide O. High autumn temperature delays spring bud burst in boreal trees counterbalancing the effect of climatic warming // Tree Physiol. 2003. Vol. 23. N 13. 931–936.

30. Heide O.M. Interaction of photoperiod and temperature in the control of growth and dormancy of Prunus species // Sci. Hort. 2008. Vol. 115. N 3. P. 309–314.

31. Cook N.C., Bellen A., Cronjé P.J., De Wit I., Keulemans W., Van den Putte A., Steyn W. Freezing temperature treatment induces bud dormancy in ‘Granny Smith’ apple shoots // Sci. Hort. 2005. Vol. 106. N 2. P. 170–176.

32. Li C., Junttila O., Heino P., Palva E.T. Low temperature sensing in silver birch (Betula pendula Roth) ecotypes // Plant Sci. 2004. Vol. 167. N 1. P. 165–171.

33. Christersson L. The influence of photoperiod and temperature on the development of frost hardiness in seedlings of Pinus silvestris and Picea abies // Physiol. Plant. 1978. Vol. 44. N 3. P. 288–294.

34. Wake C.M., Fennell A. Morphological physiological and dormancy responses of three Vitis genotypes to short photoperiod // Physiol. Plant. 2000. Vol. 109. N 2. P. 203–210.

35. Соловченко А.Е., Ткачев Е.Н., Цуканова Е.М., Шурыгин Б.М., Хрущев С.С., Конюхов И.В., Птушенко В.В. Фотосинтетическая активность древесных растений в период зимнего покой и ее неинвазивный мониторинг // Цифровизация агропромышленного комплекса: Сборник научных статей II международной научно-практической конференции / Под ред. Д.Ю. Муромцева и др. Тамбов: Издательский центр ФГБОУ ВО «ТГТУ», 2020. С. 352–355

36. Li C., Wu N., Liu S. Development of freezing tolerance in different altitudinal ecotypes of Salix paraplesia // Biol. Plant. 2005. Vol. 49. N 1. P. 65–71.

37. Jeknić Z., Chen T.H.H. Changes in protein profiles of poplar tissues during the induction of bud dormancy by short-day photoperiods // Plant Cell Physiol. 1999. Vol. 40. N 1. P. 25–35.

38. Zhang H.-S., Li D.-M., Tan Q.-P., Gao H.-Y., Gao D.-S. Photosynthetic activities C3 and C4 indicative enzymes and the role of photoperiod in dormancy induction in ‘Chunjie’ peach // Photosynthetica. 2015. Vol. 53. N 2. P. 269–278.

39. Junttila O. Apical growth cessation and shoot tip abscission in Salix // Physiol. Plant. 1976. Vol. 38. N 4. P. 278–286.

40. Knott J.E. Effect of a localized photoperiod on spinach // Proc. Amer. Soc. Hortic. Sci. 1934. Vol. 31. P. 152–154.

41. Garner W., Allard H. Further studies in photoperiodism: the response of the plant to relative length of day and night // Science. 1922. Vol. 55. N 1431. P. 582–583.

42. Coleman G.D., Chen T.H., Ernst S.G., Fuchigami L. Photoperiod control of poplar bark storage protein accumulation // Plant Physiol. 1991. Vol. 96. N 3. P. 686–692.

43. Wilson B.C., Jacobs D.F. Chlorophyll fluorescence of stem cambial tissue reflects dormancy development in Juglans nigra seedlings // New Forests. 2012. Vol. 43. N 5–6. P. 771–778.

44. Fowler S.G., Cook D., Thomashow M.F. Low temperature induction of Arabidopsis CBF1 2 and 3 is gated by the circadian clock // Plant Physiol. 2005. Vol. 137. N 3. P. 961–968.

45. Druart N., Johansson A., Baba K., Schrader J., Sjödin A., Bhalerao R.R., Resman L., Trygg J., Moritz T., Bhalerao R.P. Environmental and hormonal regulation of the activity–dormancy cycle in the cambial meristem involves stage-specific modulation of transcriptional and metabolic networks // Plant J. 2007. Vol. 50. N 4. P. 557–573.

46. Kitamura Y., Yamane H., Yukimori A., Shimo H., Numaguchi K., Tao R. Blooming date predictions based on Japanese apricot ‘Nanko’flower bud responses to temperatures during dormancy // HortScience. 2017. Vol. 52. N 3. P. 366–370.

47. Erez A. Bud dormancy; phenomenon problems and solutions in the tropics and subtropics // Temperate fruit crops in warm climates / Ed. A. Erez. Dordrecht: Springer, 2000. P. 17–48.

48. Erez A. Chemical control of budbreak // HortScience. 1987. Vol. 22. N 6. P. 1240–1243.

49. Frewen B.E., Chen T.H., Howe G.T., Davis J., Rohde A., Boerjan W., Bradshaw H. Quantitative trait loci and candidate gene mapping of bud set and bud flush in Populus // Genetics. 2000. Vol. 154. N 2. P. 837–845.

50. Dirlewanger E., Quero-Garcia J., Le Dantec L., Lambert P., Ruiz D., Dondini L., Illa E., Quilot-Turion B., Audergon J.M., Tartarini S. Comparison of the genetic determinism of two key phenological traits flowering and maturity dates in three Prunus species: peach apricot and sweet cherry // Heredity. 2012. Vol. 109. N 5. P. 280–292.

51. Li S., Tan Q., Sun M., Xu G., Li C., Fu X., Li L., Gao D., Li D. Protein changes in response to photoperiod during dormancy induction in peach leaves and flower buds // Sci. Hort. 2018. Vol. 239. P. 114–122.

52. Bielenberg D.G., Wang Y.E., Li Z., Zhebentyayeva T., Fan S., Reighard G.L., Scorza R., Abbott A.G. Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation // Tree Genet. Genomes. 2008. Vol. 4. N 3. P. 495–507.

53. Leida C., Conesa A., Llácer G., Badenes M.L., Ríos G. Histone modifications and expression of DAM6 gene in peach are modulated during bud dormancy release in a cultivar-dependent manner // New Phytol. 2012. Vol. 193. N 1. P. 67–80.

54. Cattani A.M., Sartor T., da Silveira Falavigna V., Porto D.D., Silveira C.P., de Oliveira P.R.D., Revers L.F. The control of bud break and flowering time in plants: contribution of epigenetic mechanisms and consequences in agriculture and breeding // Advances in Botanical Research, vol. 88 / Eds. M. Mirouze, E. Bucher, and P. Gallusci. Elsevier, 2018. P. 277–325.

55. Pedrosa A.M., Martins C.d.P.S., Goncalves L.P., Costa M.G.C. Late embryogenesis abundant (LEA) constitutes a large and diverse family of proteins involved in development and abiotic stress responses in sweet orange (Citrus sinensis L. Osb.) // PloS One. 2015. Vol. 10. N 12: e0145785.

56. Kaye C., Neven L., Hofig A., Li Q.-B., Haskell D., Guy C. Characterization of a gene for spinach CAP160 and expression of two spinach cold-acclimation proteins in tobacco // Plant Physiol. 1998. Vol. 116. N 4. P. 1367–1377.

57. Puhakainen T., Hess M.W., Mäkelä P., Svensson J., Heino P., Palva E.T. Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis // Plant Mol. Biol. 2004. Vol. 54. N 5. P. 743–753.

58. Singh R.K., Miskolczi P., Maurya J.P., Bhalerao R.P. A tree ortholog of SHORT VEGETATIVE PHASE floral repressor mediates photoperiodic control of bud dormancy // Curr. Biol. 2019. Vol. 29. N 1. P. 128–133.

59. Xie Y., Chen P., Yan Y., Bao C., Li X., Wang L., Shen X., Li H., Liu X., Niu C. An atypical R2R3 MYB transcription factor increases cold hardiness by CBFdependent and CBF-independent pathways in apple // New Phytol. 2018. Vol. 218. N 1. P. 201–218.

60. Chinnusamy V., Zhu J.-K., Sunkar R. Gene regulation during cold stress acclimation in plants // Plant stress tolerance. Methods in molecular biology (Methods and protocols), vol. 639 / Ed. R. Sunkar. Humana Press, 2010. P. 39–55.

61. Artlip T., McDermaid A., Ma Q., Wisniewski M. Differential gene expression in non-transgenic and transgenic “M. 26” apple overexpressing a peach CBF gene during the transition from eco-dormancy to bud break // Hort. Res. 2019. Vol. 6: 86.

62. Tylewicz S., Petterle A., Marttila S., Miskolczi P., Azeez A., Singh R.K., Immanen J., Mähler N., Hvidsten T.R., Eklund D.M. Photoperiodic control of seasonal growth is mediated by ABA acting on cell-cell communication // Science. 2018. Vol. 360. N 6385. P. 212–215.

63. Eriksson M.E., Moritz T. Daylength and spatial expression of a gibberellin 20-oxidase isolated from hybrid aspen (Populus tremula L.× P. tremuloides Michx.) // Planta. 2002. Vol. 214. N 6. P. 920–930.

64. Rinne P.L., Welling A., Vahala J., Ripel L., Ruonala R., Kangasjärvi J., van der Schoot C. Chilling of dormant buds hyperinduces FLOWERING LOCUS T and recruits GA-inducible 1 3-β-glucanases to reopen signal conduits and release dormancy in Populus // The Plant Cell. 2011. Vol. 23. N 1. P. 130–146.

65. Wen L., Zhong W., Huo X., Zhuang W., Ni Z., Gao Z. Expression analysis of ABA-and GA-related genes during four stages of bud dormancy in Japanese apricot (Prunus mume Sieb. et Zucc) // J. Hort. Sci. Biotechnol. 2016. Vol. 91. N 4. P. 362–369.

66. Mølmann J.A., Asante D.K., Jensen J.B., Krane M.N., Ernstsen A., Junttila O., Olsen J.E. Low night temperature and inhibition of gibberellin biosynthesis override phytochrome action and induce bud set and cold acclimation but not dormancy in PHYA overexpressors and wild-type of hybrid aspen // Plant Cell Environ. 2005. Vol. 28. N 12. P. 1579–1588.

67. Kumar G., Gupta K., Pathania S., Swarnkar M.K., Rattan U.K., Singh G., Sharma R.K., Singh A.K. Chilling affects phytohormone and post-embryonic development pathways during bud break and fruit set in apple (Malus domestica Borkh.) // Sci. Rep. 2017. Vol. 7: 42593.

68. Porto D.D., Bruneau M., Perini P., Anzanello R., Renou J.-P., Santos H.P.d., Fialho F.B., Revers L.F. Transcription profiling of the chilling requirement for bud break in apples: a putative role for FLC-like genes // J. Exp. Bot. 2015. Vol. 66. N 9. P. 2659–2672.

69. Кефели В.И., Коф Э.М., Власов П.В., Кислин Е.Н. Природный ингибитор роста-абсцизовая кислота. М.: Институт физиологии растений им. К.А. Тимирязева, 1989. 184 с.

70. Rinne P.L., Kaikuranta P.M., Van Der Schoot C. The shoot apical meristem restores its symplasmic organization during chilling-induced release from dormancy // Plant J. 2001. Vol. 26. N 3. P. 249–264.

71. Busov V.B. Plant development: dual roles of poplar SVL in vegetative bud dormancy // Curr. Biol. 2019. Vol. 29. N 2. P. R68–R70.

72. Ruttink T., Arend M., Morreel K., Storme V., Rombauts S., Fromm J., Bhalerao R.P., Boerjan W., Rohde A. A molecular timetable for apical bud formation and dormancy induction in poplar // The Plant Cell. 2007. Vol. 19. N 8. P. 2370–2390.

73. Oláh V., Hepp A., Mészáros I. Temporal dynamics in photosynthetic activity of Spirodela polyrhiza turions during dormancy release and germination // Environ. Exp. Bot. 2017. Vol. 136. P. 50–58.

74. Ruonala R., Rinne P.L., Baghour M., Moritz T., Tuominen H., Kangasjärvi J. Transitions in the functioning of the shoot apical meristem in birch (Betula pendula) involve ethylene // Plant J. 2006. Vol. 46. N 4. P. 628–640.

75. Li M., Kim C. Chloroplast ROS and stress signaling // Plant Commun. 2022. Vol. 3. N 1: 100264.

76. Hüner N., Bode R., Dahal K., Busch F., Possmayer M., Szyszka B., Rosso D., Ensminger I., Krol M., Ivanov A., Maxwell D. Shedding some light on cold acclimation, cold adaptation, and phenotypic plasticity // Botany. 2012. Vol. 91. N 3. P. 127–136.

77. Huner N., Dahal K., Hollis L., Bode R., Rosso D., Krol M., Ivanov A.G. Chloroplast redox imbalance governs phenotypic plasticity: the “grand design of photosynthesis” revisited // Front. Plant Sci. 2012. Vol. 3: 255.

78. Ensminger I., Busch F., Huner N. Photostasis and cold acclimation: sensing low temperature through photosynthesis // Physiol. Plant. 2006. Vol. 126. N 1. P. 28–44.

79. Öquist G., Huner N.P. Photosynthesis of overwintering evergreen plants // Ann. Rev. Plant Biol. 2003. Vol. 54. P. 329–355.

80. Sofronova V., Antal T., Dymova O., Golovko T. Seasonal changes in primary photosynthetic events during low temperature adaptation of Pinus sylvestris in Central Yakutia // Russ. J. Plant Physiol. Vol. 65. N 5. P. 658–666.

81. Lípová L., Krchňák P., Komenda J., Ilík P. Heatinduced disassembly and degradation of chlorophyllcontaining protein complexes in vivo // Biochim. Biophys. Acta (BBA)-Bioenergetics. 2010. Vol. 1797. N 1. P. 63–70.

82. Yang Q., Blanco N.E., Hermida-Carrera C., Lehotai N., Hurry V., Strand Å. Two dominant boreal conifers use contrasting mechanisms to reactivate photosynthesis in the spring // Nat. Comm. 2020. Vol. 11. N 1: 128.

83. Tikkanen M., Grebe S. Switching off photoprotection of photosystem I–a novel tool for gradual PSI photoinhibition // Physiol. Plant. 2018. Vol. 162. N 2. P. 156–161.

84. Vogg G., Heim R., Hansen J., Schäfer C., Beck E. Frost hardening and photosynthetic performance of Scots pine (Pinus sylvestris L.) needles. I. Seasonal changes in the photosynthetic apparatus and its function // Planta. 1998. Vol. 204. N 2. P. 193–200.

85. Chang C.Y.Y., Bräutigam K., Hüner N.P., Ensminger I. Champions of winter survival: cold acclimation and molecular regulation of cold hardiness in evergreen conifers // New Phytol. 2021. Vol. 229. N 2. P. 675–691.

86. Valcke R. Can chlorophyll fluorescence imaging make the invisible visible? // Photosynthetica. 2021. Vol. 51. P. 381–398.

87. Vlaovic J., Balen J., Grgic K., Zagar D., Galic V., Simic D. An overview of chlorophyll fluorescence measurement process meters and methods // Proceedings of 2020 International Conference on Smart Systems and Technologies (SST) / Eds. D. Zagar, G. Martinovic, S. Rimae Drlje, and I. Galic. Computer Science and Information Technology Osijek, 2020. P. 245–250.

88. Hawkins C., Lister G. In vivo chlorophyll fluorescence as a possible indicator of the dormancy stage in Douglas-fir seedlings // Can. J. Forest Res. 1985. Vol. 15. N 4. P. 607–612.

89. Damesin C. Respiration and photosynthesis characteristics of current-year stems of Fagus sylvatica: from the seasonal pattern to an annual balance // New Phytol. 2003. Vol. 158. N 3. P. 465–475.

90. Lennartsson M., Ögren E. Predicting the cold hardiness of willow stems using visible and near-infrared spectra and sugar concentrations // Trees. 2003. Vol. 17. N 5. P. 463–470.

91. Linkosalo T., Heikkinen J., Pulkkinen P., Mäkipää R. Fluorescence measurements show stronger cold inhibition of photosynthetic light reactions in Scots pine compared to Norway spruce as well as during spring compared to autumn // Front. Plant Sci. 2014. Vol. 5: 264.

92. Sundblad L.-G., Sjöström M., Malmberg G., Öquist G. Prediction of frost hardiness in seedlings of Scots pine (Pinus sylvestris) using multivariate analysis of chlorophyll a fluorescence and luminescence kinetics // Can. J. Forest Res. 1990. Vol. 20. N 5. P. 592–597.

93. Sakar E.H., El Yamani M., Rharrabti Y. Frost susceptibility of five almond [Prunus dulcis (mill.) DA Webb] cultivars grown in north-eastern Morocco as revealed by chlorophyll fluorescence // Int. J. Fruit Sci. 2017. Vol. 17. N 4. P. 415–422.

94. Savitch L.V., Leonardos E.D., Krol M., Jansson S., Grodzinski B., Huner N., Öquist G. Two different strategies for light utilization in photosynthesis in relation to growth and cold acclimation // Plant Cell Environ. 2002. Vol. 25. N 6. P. 761–771.

95. Corcuera L., Gil-Pelegrin E., Notivol E. Intraspecific variation in Pinus pinaster PSII photochemical efficiency in response to winter stress and freezing temperatures // PLoS One. 2011. Vol. 6. N 12: e28772.

96. Öquist G., Brunes L., Hällgren J.-E., Gezelius K., Hallén M., Malmberg G. Effects of artificial frost hardening and winter stress on net photosynthesis photosynthetic electron transport and RuBP carboxylase activity in seedlings of Pinus silvestris // Physiol. Plant. 1980. Vol. 48. N 4. P. 526–531.

97. Grebe S., Trotta A., Bajwa A.A., Suorsa M., Gollan P.J., Jansson S., Tikkanen M., Aro E.M. The unique photosynthetic apparatus of Pinaceae—Analysis of photosynthetic complexes in Norway spruce (Picea abies) // J. Exp. Bot. 2019. Vol. 70. N 12. P. 3211–3225.

98. Grebe S., Trotta A., Bajwa A., Mancinia I., Bag P., Jansson S., Tikkanen M., Aro E.M. Specific thylakoid protein phosphorylations are prerequisites for overwintering of Norway spruce (Picea abies) photosynthesis // Proc. Natl. Acad. Sci. U.S.A. 2020. Vol. 117. N 30. P. 17499–17509.

99. Ivanov A., Sane P., Zeinalov Y., Simidjiev I., Huner N., Öquist G. Seasonal responses of photosynthetic electron transport in Scots pine (Pinus sylvestris L.) studied by thermoluminescence // Planta. 2002. Vol. 215. N 3. P. 457–465.

100. Zhang C., Atherton J., Penuelas J., Filella I., Kolari P., Aalto J., Ruhanen H., Back J., Porcar-Castell A. Do all chlorophyll fluorescence emission wavelengths capture the spring recovery of photosynthesis in boreal evergreen foliage? // Plant Cell Environ. Vol. 42. N 12. P. 3264–3279.


Рецензия

Для цитирования:


Соловченко А.Е., Ткачев Е.Н., Цуканова Е.М., Шурыгин Б.М., Хрущев С.С., Конюхов И.В., Птушенко В.В. Зимний покой древесных растений и его неинвазивный мониторинг. Вестник Московского университета. Серия 16. Биология. 2022;77(2):51–64.

For citation:


Solovchenko A.E., Tkachyov E.N., Tsukanova E.M., Shuryhin B.M., Khruschev S.S., Konyukhov I.V., Ptushenko V.V. Winter dormancy of woody plants and its non-invasive monitoring. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2022;77(2):51–64. (In Russ.)

Просмотров: 75


ISSN 0137-0952 (Print)