Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

Photosensory and signaling properties of cryptochromes

Abstract

The blue-light protein sensors cryptochromes compose the widespread class of photoreceptors that regulate processes of development in plants and circadian rhythms in animals and plants. These photoreceptors can also function as magnetoreceptors. During the last decade cryptochromes have been discovered and characterized in several photosynthetic algae, where they may act not only as regulatory photoreceptors, but also as photolyases catalyzing the repair of ultraviolet-induced DNA lesions. Cryptochrome proteins bind flavin adenine dinucleotide (FAD) as a chromophore in the photolyase homology region (PHR) domain and contain the cryptochrome C-terminal extension (CCE) which is joined to PHR near the FAD-binding site. The chromophore is responsible for photosensory properties of cryptochromes and CCE is essential for their signaling activities. Photosensory processes are initiated by photochemical FAD conversions involving electron/proton transfer and the formation of redox forms. These reactions lead to changes in chromophore–protein interactions. The resulting conformational transitions in protein structure provide the molecular foundation of cryptochrome signaling activity in living systems. In plants, cryptochrome protein with photoreduced FAD undergoes conformational changes causing disengagement of the PHR domain and CCE that is accompanied by the formation of functionally active dimers/tetramers of cryptochrome molecules. Photooligomerization is considered as a key process necessary for cryptochrome signaling activity, since oligomers provide the formation their complexes with variety proteins, the components of photoreceptor signaling pathways. Interactions cryptochrome–protein in such complexes changes the protein signaling activities leading to gene expression alteration and photomorphogenesis. In this review, current knowledge on photosensory and signaling properties of cryptochromes are discussed.

About the Author

G. Ya. Fraikin
Department of Biophysics, Biological Faculty, Lomonosov Moscow State University
Russian Federation

 1–12 Leninskie Gory, Moscow, 119234, Russia 



References

1. Fraikin G.Ya., Strakhovskaya M.G., Rubin A.B. Biological photoreceptors of light-dependent regulatory processes // Biochemistry (Mosc.). 2013. Vol. 78. N 11. P. 1238–1253.

2. Losi A., Gartner W. The evolution of flavin-binding photoreceptors: an ancient chromophore serving trendy bluelight sensors // Annu. Rev. Plant Biol. 2012. Vol. 63. P. 49–72.

3. Schwinn K., Ferre N., Huix-Rotllant M. UV-visible absorption spectrum of FAD and its reduced forms embedded in a cryptochrome protein // Phys. Chem. Chem. Phys. 2020. Vol. 22. N 22. P. 12447–12455.

4. Liu B., Liu H., Zhong D., Lin C. Searching for a photocycle of the cryptochrome photoreceptors // Curr. Opin. Plant Biol. 2010. Vol. 13. N 5. P. 578–586.

5. Chaves I., Pokorny R., Byrdin M., Hoang N., Ritz T., Brettel K., Essen L.-O., van der Horst G.T., Batschauer A., Ahmad M. The cryptochromes: blue light photoreceptors in plants and animals // Annu. Rev. Plant Biol. 2011. Vol. 62. P. 335–364.

6. Dasgupta A., Fuller K.K., Dunlap J.C., Loros J.J. Seeing the world differently: variability in the photosensory mechanisms of two model fungi // Environ. Microbiol. 2016. Vol. 18. N 1. P. 5–20.

7. Ozturk N. Phylogenetic and functional classification of the photolyase/cryptochrome family // Photochem. Photobiol. 2017. Vol. 93. N 1. P. 104–111.

8. Zhang M., Wang L., Zhong D. Photolyase: dynamics and electron-transfer mechanisms of DNA repair // Arch. Biochem. Biophys. 2017. Vol. 632. P. 158–174.

9. Vechtomova Y.L., Telegina T.A., Kritsky M.S. Evolution of proteins of the DNA photolyase/cryptochrome family // Biochemistry (Mosc.). 2020. Vol. 85. N 1. P. 131–153.

10. Konig S., Juhas M., Jager S., Kottke T., Buchel C. The cryptochrome-photolyase protein family in diatoms // J. Plant Physiol. 2017. Vol. 217. N 1. P. 15–19.

11. Kottke T., Oldemeyer S., Wenzel S., Zou Y., Mittag M. Cryptochrome photoreceptors in green algae: unexpected versatility of mechanisms and functions // J. Plant Physiol. 2017. Vol. 217. N 1. P. 4–14.

12. Michael A.K., Fribourgh J.L., Van Gelder R.N., Partch C.L. Animal cryptochromes: divergent roles in light perception, circadian timekeeping and beyond // Photochem. Photobiol. 2017. Vol. 93. N 1. P. 128–140.

13. Oldemeyer S., Franz S., Wenzel S., Essen L.-O., Mittag M., Kottke T. Essential role of an unusual long-lived tyrosil radical in the response to red light of the animal-like cryptochrome aCRY // J. Biol. Chem. 2016. Vol. 291. N 27. P. 14062–14071.

14. Paulus B., Bajzath C., Melin F., Heidinger L., Kromm V., Herkersdorf C., Benz U., Mann L., Stehle P., Hellwig P., Weber S., Schleicher E. Spectroscopic characterization of radicals and radical pairs in fruit fly cryptochrome – protonated and nonprotonated flavin radical-states // FEBS J. 2015. Vol. 282. N 16. P. 3175–3189.

15. Zoltowski B.D. Resolving cryptic aspects of cryptochrome signaling // Proc. Natl. Acad. Sci. U.S.A. 2015. Vol. 112. N 29. P. 8811–8812.

16. Wang Q., Zuo Z., Wang X., Liu Q., Gu L., Oka Y., Lin C. Beyond the photocycle – how cryptochromes regulate photoresponses in plants // Curr. Opin. Plant Biol. 2018. Vol. 45. Pt. A. P. 120–126.

17. Zoltowski B.D., Vaidya A.T., Top D., Widom J., Young M.W., Crane B.R. Structure of full-length Drosophila cryptochrome // Nature. 2011. Vol. 480. N 7377. P. 396–399.

18. Franz S., Ignatz E., Wenzel S., Zielosko H., Putu E., Maestre-Reyna M., Tsai M.-D., Yamomoto J., Mittag M., Essen L.-O. Structure of the bifunctional cryptochrome aCRY from Chlamydomonas reinhardtii // Nucleic Acids Res. 2018. Vol. 46. N 15. P. 8010–8022.

19. Ahmad M. Photocycle and signaling mechanisms of plant cryptochromes // Curr. Opin. Plant Biol. 2016. Vol. 33. P. 108–115.

20. Hense A., Herman E., Oldemeyer S., Kottke T. Proton transfer to flavin stabilizes the signaling state of the blue light receptor plant cryptochrome // J. Biol. Chem. 2015. Vol. 290. N 3. P. 1743–1751.

21. Lacombat F., Espagne A., Dozova N., Plaza P., Muller P., Brettel K., Franz-Badur S., Essen L.-O. Ultrafast oxidation of a tyrosine by proton-coupled electron transfer promotes light activation of an animal-like cryptochrome // J. Am. Chem. Soc. 2019. Vol. 141. N 34. P. 13394–13409.

22. Oldemeyer S., Haddat A.Z., Fleming G.R. Interconnection of the antenna pigment 8-HDF and flavin facilitates red-light reception in bifunctional animal-like cryptochrome // Biochemistry. 2020. Vol. 59. N 4. P. 594–604.

23. Thoing C., Oldemeyer S., Kottke T. Microsecond deprotonation of aspartic acid and response of the α/β subdomain precede C-terminal signaling in the blue light sensor plant cryptochrome // J. Am. Chem. Soc. 2015. Vol. 137. N 18. P. 5990–5999.

24. Herbel V., Orth C., Wenzel R., Ahmad M., Bittl R., Batschauer A. Lifetimes of Arabidopsis cryptochrome signaling states in vivo // Plant J. 2013. Vol. 74. N 4. P. 583–592.

25. Muller P., Ahmad M. Light-activated cryptochrome reacts with molecular oxygen to form a flavin-superoxide radical pair consistent with magnetoreception // J. Biol. Chem. 2011. Vol. 286. N 24. P. 21033–21040.

26. Wang Q., Lin C. A structural view of plant CRY2 photoactivation and inactivation // Nat. Struct. Mol. Biol. 2020. Vol. 27. N 5. P. 401–403.

27. Gao J., Wang X., Zhang M., Bian M., Deng W., Zuo Z., Yang Z., Zhong D., Lin C. Trp triad-dependent rapid photoreduction is not required for the function of Arabidopsis CRY1 // Proc. Natl. Acad. Sci. U.S.A. 2015. Vol. 112. N 29. P. 9135–9140.

28. Liu H., Su T., He W., Wang G., Lin C. The universally conserved residues are not universally required for stable protein expression or functions of cryptochromes // Mol. Biol. Evol. 2019. Vol. 37. N 2. P. 327–340.

29. Shao K., Zhang X., Li X., Hao Y., Huang X., Ma M., Zhang M., Yu F., Liu H., Zhang P. The oligomeric structures of plant cryptochromes // Nat. Struct. Mol. Biol. 2020. Vol. 27. N 5. P. 480–488.

30. Ma L., Wang X., Guan Z., Wang L., Wang Y., Zheng L., Gong Z., Shen C., Wang J., Zhang D., Liu Z., Yin P. Structural insight into BIC-mediated inactivation of Arabidopsis cryptochrome 2 // Nat. Struct. Mol. Biol. 2020. Vol. 27. N 5. P. 472–479.

31. Zoltowski B.D., Chelliah Y., Wickramaratne A., Jarecha L., Karki N., Xu W., Mouritsen H., Hore P.J., Hibbs R.E., Green C.B., Takahashi J.S. Chemical and structural analysis of a photoactive vertebrate cryptochrome from pigeon // Proc. Natl. Acad. Sci. U.S.A. 2019. Vol. 116. N 39. P. 19449–19457.

32. Hore P.J., Mouritsen H. The radical-pair mechanisms of magnetoreception // Annu. Rev. Biophys. 2016. Vol. 4. P. 299–344.

33. Pooam M., Arthaut L.-D., Burdick D., Link J., Martino C.F., Ahmad M. Magnetic sensitivity mediated by the Arabidopsis blue-light receptor cryptochrome occurs during flavin reoxidation in the dark // Planta. 2019. Vol. 249. N 2. P. 319–332.


Review

For citations:


Fraikin G.Ya. Photosensory and signaling properties of cryptochromes. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2022;77(2):65–75. (In Russ.)

Views: 425


ISSN 0137-0952 (Print)