The effect of acute hypoxia at different gestation periods on markers of oxidative stress in rat’s offspring
Abstract
Intrauterine hypoxia is the most common prenatal risk factor providing the direct danger not only to the fetus, but also to the future postnatal life. The aim of this study is to identify the relationship between fetal hypoxia and oxidative stress, as well as to assess the significance of gestational age and gender for the development of oxidative stress. Pregnant rats were subjected to acute hypoxia on the 10th or 20th day of pregnancy, which correspond to the first and the second trimesters of human pregnancy, respectively. In newborn rats on the 2nd day of postnatal development and in mature offspring of both sexes on the 60th day of life the state of antioxidant protection was assessed by the content of non-protein thiols in blood and liver homogenate, catalase and superoxide dismutase activity in the liver homogenate, total antioxidant activity and the level of ceruloplasmin of blood plasma, as well as by the intensity of lipid peroxidation in blood plasma and liver homogenate. Regardless of the gestation period corresponding to acute hypoxia in offspring, noticeable changes of antioxidant protection system parameters were recorded in newborns, indicating the development of oxidative stress, responsible for neurological and cardiological disorders already shown for adult animals.
Keywords
About the Authors
A. V. GrafRussian Federation
1–12 Leninskie gory, 119234, Moscow, Russia
4 Maximova str., 123098, Moscow, Russia
A. A. Baizhumanov
Russian Federation
1–12 Leninskie gory, 119234, Moscow, Russia
M. V. Maslova
Russian Federation
1–12 Leninskie gory, 119234, Moscow, Russia
Ya. V. Krushinskaya
Russian Federation
1–12 Leninskie gory, 119234, Moscow, Russia
A. S. Maklakova
Russian Federation
1–12 Leninskie gory, 119234, Moscow, Russia
N. A. Sokolova
Russian Federation
1–12 Leninskie gory, 119234, Moscow, Russia
A. A. Kamensky
Russian Federation
1–12 Leninskie gory, 119234, Moscow, Russia
References
1. Kingdom J.C.P., Kaufmann P. Oxygen and placental villous development: origins of fetal hypoxia // Placenta. 1997. Vol. 18. N 8. P. 613–621.
2. Moshiro R., Mdoe P., Perlman J.M. A Global view of neonatal asphyxia and resuscitation // Front. Pediatr. 2019. Vol. 7: 489.
3. Fisher J.J., Bartho L.A., Perkins A.V., Holland O.J. Placental mitochondria and reactive oxygen species in the physiology and pathophysiology of pregnancy // Clin. Exp. Pharmacol. Physiol. 2020. Vol. 47. N 1. P 176–184.
4. Meyer K., Zhang L. Fetal programming of cardiac function and dsease // Reprod. Sci. 2007. Vol. 14. N 3. P. 209–216.
5. Giussani D.A., Davidge S.T. Developmental programming of cardiovascular disease by prenatal hypoxia // J. Dev. Orig. Health Dis. 2013. Vol. 4. N 5. P. 328–337.
6. Giussani D.A. The fetal brain sparing response to hypoxia: physiological mechanisms // J. Physiol. 2016. Vol. 594. N 5. P. 1215–1230.
7. Chan L.Y., Chiu P.Y., Siu S.S.N., Lau T.K. A study of diclofenac-induced teratogenicity during organogenesis using a whole rat embryo culture model // Hum. Reprod. 2001 Vol. 16. N 11. P. 2390–2393.
8. Ross E.J., Graham D.L., Money K.M., Stanwood G.D. Developmental consequences of fetal exposure to drugs: what we know and what we still must learn // Neuropsychopharmacology. 2015. Vol. 40. N 1. P. 61–87.
9. Graf A.V., Maslova M.V., Artiukhov A.V., Ksenofontov A.L., Aleshin V.A., Bunik V.I. Acute prenatal hypoxia in rats affects physiology and brain metabolism in the offspring, dependent on sex and gestational age // Int. J. Mol. Sci. 2022. Vol. 23. N 5: 2579.
10. Huang L., Chen X., Dasgupta C., Chen W., Song R., Wang C., Zhanget L. Foetal hypoxia impacts methylome and transcriptome in developmental programming of heart disease // Cardiovasc. Res. 2019. Vol. 115. N 8. P. 1306–1319.
11. Graf A., Trofimova L., Ksenofontov A., Baratova L., Bunik V. Hypoxic adaptation of mitochondrial metabolism in rat cerebellum decreases in pregnancy // Cells. 2020. Vol. 9. N 1: 139.
12. Zhidkova T.V., Proskurnina E.V., Parfenov E.A., Vladimirov Y.A. Determination of superoxide dismutase and SOD-mimetic activities by a chemical system: Co2/H2O2/lucigenin // Anal. Bioanal. Chem. 2011. Vol. 401. N 1. P. 381–386.
13. Pankratova M.S., Baizhumanov A.A., Yusipovich A.I., Faassen M., Shiryaeva T.Yu., Peterkova V.A., Kovalenko S.S., Kazakova T.A., Maksimov G.V. Imbalance in the blood antioxidant system in growth hormone-deficient children before and after 1 year of recombinant growth hormone therapy // PeerJ. 2015. Vol. 3: e1055.
14. Матюлько И.С., Байжуманов А.А., Хиразова Е.Э., Маслова М.В. Влияние различных режимов питьевой депривации на систему антиоксидантной защиты крови и поведенческую активность крыс // Журн. мед.-биол. исслед. 2018. Т. 6. № 3. P. 254–261.
15. Haase V.H. Regulation of erythropoiesis by hypoxiainducible factors // Blood Rev. 2013. Vol. 27. N 1. P. 41–53.
16. Halliwell B., Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? // Br. J. Pharmacol. 2004. Vol. 142. N 2. P. 231–255.
17. Graf A.V., Baizhumanov A.A., Maslova M.V., Krushinskaya Ya.V., Maklakova A.S., Sokolova N.A., Kamensky A.A. The antioxidant system activity during normal pregnancy and pregnancy followed by hypoxic stress // Moscow Univ. Biol. Sci. Bull. 2021. Vol. 76. N 3. P. 104–110.
18. Von Essen C., Rydenhag B., Mozzi R., van Gelder N., Hamberger A. High levels of glycine and serine as a cause of the seizure symptoms of cavernous angiomas? // J. Neurochem. 2002. Vol. 67. N 1. P. 260–264.
19. Bayer S.A., Altman J., Russo R.J., Zhang X. Timetables of neurogenesis in the human brain based on experimentally determined patterns in the rat // Neurotoxicology. 1993. Vol. 14. N 1. P. 83–144.
20. Laforgia N., Di Mauro A., Favia Guarnieri G., Varvara D., De Cosmo L., Panza R., Capozza M., Baldassarre M.E., Resta N. The role of oxidative stress in the pathomechanism of congenital malformations // Oxid. Med. Cell. Longev. 2018. Vol. 2018: 7404082.
21. Wu F., Tian F.-J., Lin Y. Oxidative stress in placenta: health and diseases // Biomed. Res. Int. 2015. Vol. 2015: 293271.
22. Silvestro S., Calcaterra V., Pelizzo G., Bramanti P., Mazzon E. Prenatal hypoxia and placental oxidative stress: insights from animal models to clinical evidences // Antioxidants (Basel). 2020. Vol. 9. N 5: 414.
23. Chiera M., Cerritelli F., Casini A., Barsotti N., Boschiero D., Cavigioli F., Corti C.G., Manzotti A. Heart rate variability in the perinatal period: a critical and conceptual review // Front. Neurosci. 2020. Vol. 14: 561186.
24. Ghulmiyyah L.M., Costantine M.M., Yin H., Tamayo E., Clark S.M., Hankins G.D.V., Saade G.R, Longo M. The role of oxidative stress in the developmental origin of adult hypertension // Am. J. Obstet. Gynecol. 2011. Vol. 205. N 2. P. 155.e7–155.e11.
25. Bureau I., Gueux E., Mazur A., Rock E., Roussel A.-M., Rayssiguier Y. Female rats are protected against oxidative stress during copper deficiency // J. Am. Coll. Nutr. 2003. Vol. 22. N 3. P. 239–246.
26. Katalinic V., Modun D., Music I., Boban M. Gender differences in antioxidant capacity of rat tissues determined by 2,2′-azinobis (3-ethylbenzothiazoline 6-sulfonate; ABTS) and ferric reducing antioxidant power (FRAP) assays // Comp. Biochem. Physiol. Part. C. Toxicol. Pharmacol. 2005. Vol. 40. N 1. P. 47–52.
27. Kander M.C., Cui Y., Liu Z. Gender difference in oxidative stress: a new look at the mechanisms for cardiovascular diseases // J. Cell. Mol. Med. 2017. Vol. 21. N 5. P. 1024–1032.
28. Barp J., Araújo A.S.R., Fernandes T.R.G., Rigatto K.V., Llesuy S.., Belló-Klein A., Singal A. Myocardial antioxidant and oxidative stress changes due to sex hormones // Braz. J. Med. Biol. Res. 2002. Vol. 35. N 9. P. 1075–1081.
29. Ide T., Tsutsui H., Ohashi N., Hayashidani S., Suematsu N., Tsuchihashi M., Tamai H., Takeshita A. Greater oxidative stress in healthy young men compared with premenopausal women // Arterioscler. Thromb. Vasc. Biol. 2002. Vol. 22. N 3. P. 438–442.
30. Vassalle C., Sciarrino R., Bianchi S., Battaglia D., Mercuri A., Maffei S. Sex-related differences in association of oxidative stress status with coronary artery disease // Fertil. Steril. 2012. Vol. 97. N 2. P. 414–419.
31. Dadu R.T., Dodge R., Nambi V., Virani S.S., Hoogeveen R.C., Smith N.L., Chen F., Pankow J.S., Guild C., Tang W.H.W., Boerwinkle E., Hazen S.L., Ballantyne C.M. Ceruloplasmin and heart failure in the atherosclerosis risk in communities study // Circ. Heart Fail. 2013. Vol. 6. N 5. P. 936–943.
Review
For citations:
Graf A.V., Baizhumanov A.A., Maslova M.V., Krushinskaya Ya.V., Maklakova A.S., Sokolova N.A., Kamensky A.A. The effect of acute hypoxia at different gestation periods on markers of oxidative stress in rat’s offspring. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2022;77(2):104–111. (In Russ.)