Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

Recombinant peptides Ce1 and Ce4 from venom of scorpion Centruroides elegans and their interactions with hybrid channels KcsA-K V 1.x (x = 1, 3, 6)

Abstract

A technique has been developed for obtaining recombinant functionally-active peptides Ce1 and Ce4 from the venom of the scorpion Centruroides elegans in the E. coli expression system. The yields of peptides Ce1 and Ce4 were 6.5 and 12 mg per liter of culture, respectively. The properties of the obtained peptides were studied using bioengineered systems based on hybrid KV1 channels KcsA-Kv1.x (x=1, 3, 6) containing blocker binding sites of the corresponding eukaryotic potassium channels of Kv1-family. It has been shown that recombinant Ce1 and Ce4 do not exhibit affinity to the binding sites of Kv1.1 and Kv1.6 channels up to micromolar concentrations and, like natural peptides, selectively interact with the binding site of Kv1.3 channel: the apparent dissociation constants of KcsA-Kv1.3 complexes with recombinant Ce1 and Ce4 are 50±10 and 200±30 nM, respectively.

About the Authors

N. A. Orlov
Department of Bioengineering, School of Biology, Lomonosov Moscow State University; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; School of Biology, Shenzhen MSU-BIT University, No. 1, International University Park Road, Dayun New Town, Longgang District, Shenzhen, Guangdong Province
Russian Federation

 1–12 Leninskie gory, Moscow, 119234, Russia 

 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia 

 518172, China 



S. A. Yakimov
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Russian Federation

 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia 



O. V. Nekrasova
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Russian Federation

 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia 



A. V. Feofanov
Department of Bioengineering, School of Biology, Lomonosov Moscow State University; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Russian Federation

 1–12 Leninskie gory, Moscow, 119234, Russia 

 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia 



References

1. Jan L.Y., Jan Y.N. Voltage-gated potassium channels and the diversity of electrical signalling // J. Physiol. 2012. Vol. 590. N 11. P. 2591–2599.

2. González C., Baez-Nieto D., Valencia I., Oyarzún I., Rojas P., Naranjo D., Latorre R. K+ channels: functionstructural overview // Compr. Physiol. 2012. Vol. 2. N 3. P. 2087–2149.

3. Chow L.W.C., Leung Y.M. The versatile Kv channels in the nervous system: actions beyond action potentials // Cell. Mol. Life Sci. 2020. Vol. 77. N 13. P. 2473–2482.

4. Wulff H., Castle N.A., Pardo L.A. Voltage-gated potassium channels as therapeutic targets // Nat. Rev. Drug Discov. 2009. N 12. P. 982–1001.

5. Beraud E., Viola A., Regaya I., Confort-Gouny S., Siaud P., Ibarrola D., le Fur Y., Barbaria J., Pellissier J.F., Sabatier J.M., Medina I., Cozzone P.J. Block of neural Kv1.1 potassium channels for neuroinflammatory disease therapy // Ann. Neurol. 2006. Vol. 60. N 5. P. 586–596.

6. Cañas C.A., Castaño-Valencia S., Castro-Herrera F. Pharmacological blockade of KV1.3 channel as a promising treatment in autoimmune diseases // J. Transl. Autoimmun. 2022. Vol. 5: 100146.

7. Fomina A.F., Nguyen H.M., Wulff H. Kv1.3 inhibition attenuates neuroinflammation through disruption of microglial calcium signaling // Channels. 2021. Vol. 15. N 1. P. 67–78.

8. Kuzmenkov A.I., Grishin E.V., Vassilevski A.A. Diversity of potassium channel ligands: focus on scorpion toxins // Biochemistry (Mosc). 2015. Vol. 80. N 13. P. 1764–1799.

9. Banerjee A., Lee A., Campbell E., Mackinnon R. Structure of a pore-blocking toxin in complex with a eukaryotic voltagedependent K+ channel // Elife. 2013. N 2: e00594.

10. Hu L., Pennington M., Jiang Q., Whartenby K.A., Calabresi P.A. Characterization of the functional properties of the voltage-gated potassium channel Kv1.3 in human CD4+ T lymphocytes // J. Immunol. 2007. Vol. 179. N 7. P. 4563–4570.

11. Doczi M.A., Morielli A.D., Damon D.H. Kv1.3 channels in postganglionic sympathetic neurons: Expression, function, and modulation // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008. Vol. 295. N 3. P. R733–R740.

12. Pennington M.W., Czerwinski A., Norton R.S. Peptide therapeutics from venom: Current status and potential // Bioorganic Med. Chem. 2018. Vol. 26. N. 10. P. 2738–2758.

13. Gubič Š., Hendrickx L.A., Toplak Ž., Sterle M., Peigneur S., Tomašič T., Pardo L.A., Tytgat J, Zega A., Mašič L.P. Discovery of KV1.3 ion channel inhibitors: Medicinal chemistry approaches and challenges // Med. Res. Rev. 2021 Vol. 41. N 4. P. 2423–2473.

14. Tarcha E.J., Olsen C.M., Probst P., Peckham D., Muñoz-Elías E.J., Kruger J.G., Iadonato S.P. Safety and pharmacodynamics of dalazatide, a Kv1.3 channel inhibitor, in the treatment of plaque psoriasis: A randomized phase 1b trial // PLoS One. 2017. Vol. 12. N 7: e0180762.

15. Rodríguez De La Vega R.C., Merino E., Becerril B., Possani L.D. Novel interactions between K+ channels and scorpion toxins // Trends Pharmacol. Sci. 2003. Vol. 24. N 5. P. 222–227.

16. Giangiacomo K.M., Ceralde Y., Mullmann T.J. Molecular basis of alpha-KTx specificity // Toxicon. 2004. Vol. 43. N 8. P. 877–886.

17. Nekrasova O.V., Volyntseva A.D., Kudryashova K.S., Novoseletsky V.N., Lyapina E.A., Illarionova A.V., Yakimov S.A., Korolkova Y.V., Shaitan K.V., Kirpichnikov M.P., Feofanov A.V. Complexes of peptide blockers with Kv1.6 pore domain: molecular modeling and studies with KcsA-Kv1.6 channel // J. Neuroimmune Pharmacol. 2017. Vol. 12. N 2. P. 260–276.

18. Olamendi-Portugal T., Somodi S., Fernández J.A., Zamudio F.Z., Becerril B., Varga Z., Panyi G., Gáspár R., Possani L.D. Novel α-KTx peptides from the venom of the scorpion Centruroides elegans selectively blockade Kv1.3 over IKCa1 K+ channels of T cells // Toxicon. 2005. Vol. 46. N 4. P. 418–429.

19. D’adamo M.C., Liantonio A., Rolland J.F., Pessia M., Imbrici P. Kv1.1 channelopathies: Pathophysiological mechanisms and therapeutic approaches // Int. J. Mol. Sci. 2020. Vol. 21. N 8: 2935.

20. Peck L.J., Patel R., Diaz P., Wintle Y.M., Dickenson A.H., Todd A.J., Calvo M., Bennett D.L.H. Studying independent Kcna6 knock-out mice reveals toxicity of exogenous LacZ to central nociceptor terminals and differential effects of Kv1.6 on acute and neuropathic pain sensation // J. Neurosci. 2021. Vol. 41. N 44. P. 9141–9162.

21. Koschak A., Bugianesi R.M., Mitterdorfer J., Kaczorowski G.J., Garcia M.L., Knaus H.G. Subunit composition of brain voltage-gated potassium channels determined by hongotoxin-1, a novel peptide derived from Centruroides limbatus venom // J. Biol. Chem. 1998. Vol. 273. N 5. P. 2639–2644.

22. Bartok A., Toth A., Somodi S., Szanto T.G., Hajdu P., Panyi G., Varga Z. Margatoxin is a non-selective inhibitor of human Kv1.3 K+ channels // Toxicon. 2014. Vol. 87. P. 6–16.

23. Grissmer S., Nguyen A.N., Aiyar J., Hanson D.C., Mather R.J., Gutman G.A., Karmilowicz M.J., Auperin D.D., Chandy K.G. Pharmacological characterization of five cloned voltage-gated K+ channels, types Kv1.1, 1.2, 1.3, 1.5, and 3.1, stably expressed in mammalian cell lines // Mol. Pharmacol. 1994. Vol. 45. N 6. P. 1227–1234.

24. Kudryashova K.S., Nekrasova O.V., Kuzmenkov A.I., Vassilevski A.A., Ignatova A.A., Korolkova Y.V., Grishin E.V., Kirpichnikov M.P., Feofanov A.V. Fluorescent system based on bacterial expression of hybrid KcsA channels designed for Kv1.3 ligand screening and study // Anal. Bioanal. Chem. 2013. Vol. 405. N 7. P. 2379–2389.

25. Kuzmenkov A.I., Vassilevski A.A., Kudryashova K.S., Nekrasova O.V., Peigneur S., Tytgat J., Feofanov A.V., Kirpichnikov M.P., Grishin E.V. Variability of potassium channel blockers in Mesobuthus eupeus scorpion venom with focus on Kv1.1: an integrated transcriptomic and proteomic study // J. Biol. Chem. 2015. Vol. 290. N 19. P. 12195–12209.

26. Tropea J.E., Cherry S., Waugh D.S. Expression and purification of solubleHis6-tagged TEV protease // High throughput protein expression and purification. Methods in Molecular Biology, vol. 498. / Ed. S.A. Doyle. Humana press, 2009. P. 297–307.

27. Nekrasova O., Kudryashova K., Fradkov A., Yakimov S., Savelieva M., Kirpichnikov M., Feofanov A. Straightforward approach to produce recombinant scorpion toxins—Pore blockers of potassium channels // J. Biotechnol. 2017. Vol. 241. P. 127–135.

28. Kuipers B.J.H., Gruppen H. Prediction of molar extinction coefficients ofproteins and peptides using UV absorption of the constituent amino acids at214 nm to enable quantitative reverse phase high-performance liquidchromatography-mass spectrometry analysis // J. Agric. Food Chem. 2007. Vol. 55. N 14. P. 5445–5451.

29. Orlov N., Nekrasova O., Feofanov A. Fluorescent ligands of Kv1 channels on the basis of hongotoxin: Atto488-hongotoxin // Microsc. Microanal. 2019. Vol. 25. Suppl. 2. P. 1278–1279.

30. Kuzmenkov A.I., Nekrasova O.V., Kudryashova K.S., Peigneur S., Tytgat J., Stepanov A.V., Kirpichnikov M.P., Grishin E.V., Feofanov A.V., Vassilevski A.A. Fluorescent protein-scorpion toxin chimera is a convenient molecular tool for studies of potassium channels // Sci. Rep. 2016. Vol. 6: 33314.

31. Denisova K.R., Orlov N.A., Yakimov S.A., Kryukova E.A., Dolgikh D.A., Kirpichnikov M.P., Feofanov A.V., Nekrasova O.V. GFP-margatoxin, a genetically encoded fluorescent ligand to probe affinity of Kv1.3 channel blockers // Int. J. Mol. Sci. 2022.Vol. 23. N 3: 1724.

32. Garcia M.L., Garcia-Calvo M., Hidalgo P., Lee A., MacKinnon R. Purification and characterization of three inhibitors of voltage-dependent K+ channels from Leiurus quinquestriatus var. hebraeus venom // Biochemistry. 1994. Vol. 33. N. 22. P. 6834–6839.

33. George Chandy K., Cahalan M., Pennington M., Norton R.S., Wulff H., Gutman G.A. Potassium channels in T lymphocytes: Toxins to therapeutic immunosuppressants // Toxicon. 2001. Vol. 39. N 9. P. 1269–1276.

34. Legros C., Pollmann V., Farrell A.M., Bougis P.E., Martin-eauclaire M., Pongs O. Generating a high affinity scorpion toxin receptor in KcsA-Kv1.3 chimeric potassium channels // Biochemistry. 2000. Vol. 275. N 22. P. 16918–16924.

35. Chen R., Chung S.H. Binding modes of two scorpion toxins to the voltage-gated potassium channel Kv1.3 revealed from molecular dynamics // Toxins. 2014. Vol. 6. N 7. P. 2149–2161.


Review

For citations:


Orlov N.A., Yakimov S.A., Nekrasova O.V., Feofanov A.V. Recombinant peptides Ce1 and Ce4 from venom of scorpion Centruroides elegans and their interactions with hybrid channels KcsA-K V 1.x (x = 1, 3, 6). Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2022;77(2):122–129. (In Russ.)

Views: 234


ISSN 0137-0952 (Print)