Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

Signs of similarities and differences in cellular models of aging. A scoping review

Abstract

Despite the great interest of scientists in the question of what cell aging is, and the long history of its study, there are still many contradictions in this area. They arise because several different approaches have been developed to model aging in vitro. As a result, even different terms arose – cell senescence and cell aging. There are not only differences between models for studying aging at the cellular level, they also have common features. Moreover, it is now becoming apparent that some models complement others. This is evidenced, in particular, by the fact that biomarkers used in one model are suitable for use in another (aging-associated β-galactosidase, lipofuscin, etc.). The development of approaches to the study of cellular aging has been uneven, and at present, research on this topic is experiencing another rise due to the prospects for the use of senolytics (drugs that selectively eliminate “senescent” cells) to increase the lifespan of multicellular organisms. This review considers the pros and cons of various models for studying aging on cultured cells of various nature.

About the Authors

G. V. Morgunova
Lomonosov Moscow State University
Russian Federation

Evolutionary Cytogerontology Sector, School of Biology

1–12 Leninskie gory, Moscow, 119234



A. N. Khokhlov
Lomonosov Moscow State University
Russian Federation

Evolutionary Cytogerontology Sector, School of Biology

1–12 Leninskie gory, Moscow, 119234



References

1. Khokhlov A.N. From Carrel to Hayflick and back, or what we got from the 100-year cytogerontological studies // Biophysics. 2010. Vol. 55. N 5. P. 859–864.

2. Medvedev Z.A. On the immortality of the germ line: genetic and biochemical mechanisms. A review // Mech. Ageing Dev. 1981. Vol. 17. N 4. P. 331–359.

3. Kirkwood T.B., Cremer T. Cytogerontology since 1881: a reappraisal of August Weismann and a review of modern progress // Hum. Genet. 1982. Vol. 60. N 2. P. 101–121.

4. Weismann A. Das keimplasma. Eine theorie der vererbung. Jena: G. Fisher, 1892. 628 pp.

5. Carrel A. Artificial activation of the growth in vitro of connective tissue // J. Exp. Med. 1912. Vol. 17. N 1. P. 14–19.

6. Carrel A. Contributions to the study of the mechanism of the growth of connective tissue // J. Exp. Med. 1913. Vol. 18. N 3. P. 287–298.

7. Swim H.E., Parker R.F. Culture characteristics of human fibroblasts propagated serially // Am. J. Hyg. 1957. Vol. 66. N 2. P. 235–234.

8. Hayflick L., Moorhead P.S. The serial cultivation of human diploid cell strains // Exp. Cell Res. 1961. Vol. 25. N 3. P. 585–621.

9. Hayflick L. The limited in vitro lifetime of human diploid cell strains // Exp. Cell Res. 1965. Vol. 37. N 3. P. 614–636.

10. Hayflick L. Aging under glass // Mutat. Res., DNAging: Genet. Instab. Aging, 1991. Vol. 256. N 2–6. P. 69–80.

11. Hayflick L. Entropy explains aging, genetic determinism explains longevity, and undefined terminology explains misunderstanding both // PLoS Genet. 2007. Vol. 3. N 12: e220.

12. Hayflick L. How and why we age. N.Y.: Ballantine Books, 1996. 377 pp.

13. Olovnikov A.M. Hypothesis: lifespan is regulated by chronomere DNA of the hypothalamus // J. Alzheimer’s Dis. 2007. Vol. 11. N 2. P. 241–252.

14. Macieira-Coelho A. Cell division and aging of the organism // Biogerontology. 2011. Vol. 12. N 6. P. 503–515.

15. Olovnikov A.M. A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon // J. Theor. Biol. 1973. Vol. 41. N 1. P. 181–190.

16. Greider C.W., Blackburn E.H. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts // Cell. 1985. Vol. 43. N 2. P. 405–413.

17. Cristofalo V.J., Allen R.G., Pignolo R.J., Martin B.G., Beck J.C. Relationship between donor age and the replicative lifespan of human cells in culture: A reevaluation // Proc. Natl. Acad. Sci. U.S.A. 1998. Vol. 95. N 18. P. 10614–10619.

18. Mikhelson V.M. Replicative mosaicism might explain the seeming contradictions in the telomere theory of aging // Mech. Ageing. Dev. 2001. Vol. 122. N 13. P. 1361–1365.

19. Khokhlov A.N. Which aging in yeast is “true”? // Moscow Univ. Biol. Sci. Bull. 2016. Vol. 71. N 1. P. 11–13.

20. Laun P., Bruschi C.V., Dickinson J.R., Rinnerthaler M., Heeren G., Schwimbersky R., Rid R., Breitenbach M. Yeast mother cell-specific ageing, genetic (in)stability, and the somatic mutation theory of ageing // Nucleic Acids Res. 2007. Vol. 35. N 22. P. 7514–7526.

21. Roux A.E., Quissac A., Chartrand P., Ferbeyre G., Rokeach L.A. Regulation of chronological aging in Schizosaccharomyces pombe by the protein kinases Pka1 and Sck2 // Aging Cell. 2006. Vol. 5. N 4. P. 345–357.

22. von Zglinicki T., Saretzki G., Döcke W., Lotze C. Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence? // Exp. Cell Res. 1995. Vol. 220. N 1. P. 186–193.

23. Toussaint O., Dumont P., Dierick J.F., Pascal T., Frippiat C., Chainiaux F., Sluse F., Eliaers F., Remacle J. Stress-induced premature senescence. Essence of life, evolution, stress, and aging // Ann. N.Y. Acad. Sci. 2000. Vol. 908. P. 85–98.

24. Sikora E., Arendt T., Bennett M., Narita M. Impact of cellular senescence signature on ageing research // Ageing Res. Rev. 2011. Vol. 10. N 1. P. 146–152.

25. Campisi J. Cellular senescence: putting the paradoxes in perspective // Curr. Opin. Genet. Dev. 2011. Vol. 21. N 1. P. 107–112.

26. de Jesus B.B., Blasco M.A. Assessing cell and organ senescence biomarkers // Circ. Res. 2012. Vol. 111. N 1. P. 97–109.

27. Gorgoulis V., Adams P.D., Alimonti A., et al. Cellular senescence: defining a path forward // Cell. 2019. Vol. 179. N 4. P. 813–827.

28. Jeyapalan J.C., Sedivy J.M. Cellular senescence and organismal aging // Mech. Aging Dev. 2008. Vol. 129. N 7–8. P. 467–474.

29. Kuilman T., Michaloglou C., Mooi W.J., Peeper D.S. The essence of senescence // Genes Dev. 2010. Vol. 24. N 22. P. 2463–2479.

30. Giaimo S., D’Adda di Fagagna F. Is cellular senescence an example of antagonistic pleiotropy? // Aging Cell. 2012. Vol. 11. N 3. P. 378–383.

31. Cuervo A.M., Bergamini E., Brunk U.T., Dröge W., Ffrench M., Terman A. Autophagy and aging: the importance of maintaining “clean” cells // Autophagy. 2005. Vol. 1. N 3. P. 131–140.

32. Morgunova G.V., Shilovsky G.A., Khokhlov A.N. Effect of caloric restriction on aging: Fixing the problems of nutrient sensing in postmitotic cells? // Biochemistry (Mosc.). 2021. Vol. 86. N 10. P. 1352–1367.

33. Martínez D.E., Bridge D. Hydra, the everlasting embryo, confronts aging // Int. J. Dev. Biol. 2012. Vol. 56. N 6–8. P. 479–487.

34. Khokhlov A.N. On the immortal hydra. Again // Moscow Univ. Biol. Sci. Bull. 2014. Vol. 69. N 4. P. 153–157.

35. Lopes-Paciencia S., Saint-Germain E., Rowell M.C., Ruiz A.F., Kalegari P., Ferbeyre G. The senescence-associated secretory phenotype and its regulation // Cytokine. 2019. Vol. 117. P. 15–22.

36. Khokhlov A.N., Klebanov A.A., Morgunova G.V. On choosing control objects in experimental gerontological research // Moscow Univ. Biol. Sci. Bull. 2018. Vol. 73. N 2. P. 59–62.

37. Nyström T. Aging in bacteria // Curr. Opin. Microbiol. 2002. Vol. 5. N 6. P. 596–601.

38. Leontieva O.V., Blagosklonny M.V. Yeast-like chronological senescence in mammalian cells: phenomenon, mechanism and pharmacological suppression // Aging (Albany N.Y.). 2011. Vol. 3. N 11. P. 1078–1091.

39. Longo V.D., Shadel G.S., Kaeberlein M., Kennedy B. Replicative and chronological aging in Saccharomyces cerevisiae // Cell Metab. 2012. Vol. 16. N 1. P. 18–31.

40. Khokhlov A.N., Klebanov A.A., Karmushakov A.F., Shilovsky G.A., Nasonov M.M., Morgunova G.V. Testing of geroprotectors in experiments on cell cultures: choosing the correct model system // Moscow Univ. Biol. Sci. Bull. 2014. Vol. 69. N 1. P. 10–14.

41. Anderson R., Lagnado A., Maggiorani D., et al. Length-independent telomere damage drives post-mitotic cardiomyocyte senescence // The EMBO J. 2019. Vol. 38. N 5: e100492.

42. von Zglinicki T., Wan T., Miwa S. Senescence in post-mitotic cells: a driver of aging? // Antioxid. Redox Signal. 2021. Vol. 34. N 4. P. 308–323.

43. Baker D.J., Wijshake T., Tchkonia T., LeBrasseur N.K., Childs B.G., Van De Sluis B., Kirkland J.L., Van Deursen J.M. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders // Nature. 2011. Vol. 479. N 7372. P. 232–236.

44. Zhu Y.I., Tchkonia T., Pirtskhalava T., et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs // Aging Cell. 2015. Vol. 14. N 4. P. 644–658.

45. Young A.R., Narita M., Ferreira M., Kirschner K., Sadaie M., Darot J.F., Tavaré S., Arakawa S., Shimizu S., Watt F.M., Narita M. Autophagy mediates the mitotic senescence transition // Genes Dev. 2009. Vol. 23. N 7. P. 798–803.

46. Kaeberlein M., Burtner C.R., Kennedy B.K. Recent developments in yeast aging // PLOS Genet. 2007. Vol. 3. N 5: e84.

47. Alvers A.L., Wood M.S., Hu D., Kaywell A.C., Dunn W.A. Jr., Aris J.P. Autophagy is required for extension of yeast chronological life span by rapamycin // Autophagy. 2009. Vol. 5. N 6. P. 847–849.

48. Werner-Washburne M., Braun E., Johnston G.C., Singer R.A. Stationary phase in the yeast Saccharomyces cerevisiae // Microbiol. Mol. Biol. Rev. 1993. Vol. 57. N 2. P. 383–401.

49. Powers R.W., Kaeberlein M., Caldwell S.D., Kennedy B.K., Fields S. Extension of chronological life span in yeast by decreased TOR pathway signaling // Genes Dev. 2006. Vol. 20. N 2. P. 174–184.

50. Miller R.A., Harrison D.E., Astle C.M., Fernandez E., Flurkey K., Han M., Javors M.A., Li X., Nadon N.L., Nelson J.F., Pletcher S. Rapamycin-mediated lifespan increase in mice is dose and sex dependent and metabolically distinct from dietary restriction // Aging Cell. 2014. Vol. 13. N 3. P. 468–477.

51. Bjedov I., Toivonen J.M., Kerr F., Slack C., Jacobson J., Foley A., Partridge L. Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster // Cell Metab. 2010. Vol. 11. N 1. P. 35–46.

52. Zoico E., Rizzatti V., Policastro G., Tebon M., Darra E., Rossi A.P., Mazzali G., Fantin F., Zamboni M. In vitro model of chronological aging of adipocytes: interrelationships with hypoxia and oxidation // Exp. Gerontol. 2019. Vol. 121. P. 81–90.

53. Wierman M.B., Maqani N., Strickler E., Li M., Smith J.S. Caloric restriction extends yeast chronological lifespan by optimizing the Snf1 (AMPK) signaling pathway // Mol. Cell. Biol. 2017. Vol. 37. N 13: e00562-16.

54. Khokhlov A.N. Cell kinetic approaches to the search for anti-aging drugs: Thirty years after // Moscow Univ. Biol. Sci. Bull. 2018. Vol. 73. N 4. P. 185–190.

55. Khokhlov A.N. What will happen to molecular and cellular biomarkers of aging in case its program is canceled (provided such a program does exist)? // Adv. Gerontol. 2014. Vol. 4. N 2. P. 150–154.

56. Wiley C.D., Flynn J.M., Morrissey C., Lebofsky R., Shuga J., Dong X., Unger M.A., Vijg J., Melov S., Campisi J. Analysis of individual cells identifies cell-to-cell variability following induction of cellular senescence // Aging Cell. 2017. Vol. 16. N 5. P. 1043–1050.

57. Comfort A. Ageing: The biology of senescence. London: Routledge & Kegan Paul, 1964. 365 pp.

58. Khokhlov A.N., Morgunova G.V., Klebanov A.A. Demographic approaches to the study of aging on cell cultures // Moscow Univ. Biol. Sci. Bull. 2019. Vol. 74. N 4. P. 262–267.

59. Yang Y., Santos A.L., Xu L., Lotton C., Taddei F., Lindner A.B. Temporal scaling of aging as an adaptive strategy of Escherichia coli // Sci. Adv. 2019. Vol. 5. N 5: eaaw2069.

60. Maier A.B., Maier I.L., van Heemst D., Westendorp R.G.J. Colony formation and colony size do not reflect the onset of replicative senescence in human fibroblasts // J. Gerontol., Ser. A. 2008. Vol. 63. N 7. P. 655–659.

61. Dimri G.P., Lee X., Basile G., Acosta M., Scott G., Roskelley C., Medrano E.E., Linskens M.A., Rubelj I, Pereira-Smith O. Peacocke M., Campisi J. A biomarker that identifies senescent human cells in culture and in aging skin in vivo // Proc. Natl. Acad. Sci. U.S.A. 1995. Vol. 92. N 20. P. 9363–9367.

62. Morgunova G.V., Kolesnikov A.V., Klebanov A.A., Khokhlov A.N. Senescence-associated β-galactosidase—A biomarker of aging, DNA damage, or cell proliferation restriction? // Moscow Univ. Biol. Sci. Bull. 2015. Vol. 70. N 4. P. 165–167.

63. Samorajski T., Ordy J.M., Keefe J.R. The fine structure of lipofuscin age pigment in the nervous system of aged mice // J. Cell Biol. 1965. Vol. 26. N 3. P. 779–795.

64. Georgakopoulou E.A., Tsimaratou K., Evangelou K., Fernandez M.P., Zoumpourlis V., Trougakos I.P., Kletsas D., Bartek J., Serrano M., Gorgoulis V.G. Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues // Aging (Albany N.Y.). 2013. Vol. 5. N 1. P. 37–50.

65. Salmonowicz H., Passos J.F. Detecting senescence: a new method for an old pigment // Aging Cell. 2017. Vol. 16. N 3. P. 432–434.

66. Sitte N., Merker K., Grune T., von Zglinicki T. Lipofuscin accumulation in proliferating fibroblasts in vitro: an indicator of oxidative stress // Exp. Gerontol. 2001. Vol. 36. N 3. P. 475–486.

67. López-Otín C., Blasco M.A., Partridge L., Serrano M., Kroemer G. The hallmarks of aging // Cell. 2013. Vol. 153. N 6. P. 1194–1217.

68. Neurohr G.E., Terry R.L., Lengefeld J., Bonney M., Brittingham G.P., Moretto F., Miettinen T.P., Vaites L.P., Soares L.M., Paulo J.A., Harper J.W. Excessive cell growth causes cytoplasm dilution and contributes to senescence // Cell. 2019. Vol. 176. N 5. P. 1083–1097.

69. Ginzberg M.B., Kafri R., Kirschner M. On being the right (cell) size // Science. 2015. Vol. 348. N 6236: 1245075.

70. Ogrodnik M. Cellular aging beyond cellular senescence: Markers of senescence prior to cell cycle arrest in vitro and in vivo // Aging Cell. 2021. Vol. 20. N 4: e13338.

71. Carroll B., Nelson G., Rabanal-Ruiz Y., Kucheryavenko O., Dunhill-Turner N.A., Chesterman C.C., Zahari Q., Zhang T., Conduit S.E., Mitchell C.A, Maddocks O.D. Persistent mTORC1 signaling in cell senescence results from defects in amino acid and growth factor sensing // J. Cell Biol. 2017. Vol. 216. N 7. P. 1949–1957.

72. Baker D.J., Childs B.G., Durik M., Wijers M.E., Sieben C.J., Zhong J., Saltness R.A., Jeganathan K.B., Verzosa G.C., Pezeshki A., Khazaie K., Miller J.D., van Deursen J.M. Naturally occurring p16Ink4a -positive cells shorten healthy lifespan // Nature. 2016. Vol. 530. N 7589. P. 184–189.

73. Yousefzadeh M.J., Zhu Y.I., McGowan S.J., et al. Fisetin is a senotherapeutic that extends health and lifespan // EBioMedicine. 2018. Vol. 36. P. 18–28.

74. Xu Q., Fu Q., Li Z., Liu H., Wang Y., Lin X., He R., Zhang X., Ju Z., Campisi J., Kirkland J.L. The flavonoid procyanidin C1 has senotherapeutic activity and increases lifespan in mice // Nat. Metab. 2021. Vol. 3. N 12. P. 1706–1726.

75. Tang H., Geng A., Zhang T., Wang C., Jiang Y., Mao Z. Single senescent cell sequencing reveals heterogeneity in senescent cells induced by telomere erosion // Protein Cell. 2019. Vol. 10. N 5. P. 370–375.


Review

For citations:


Morgunova G.V., Khokhlov A.N. Signs of similarities and differences in cellular models of aging. A scoping review. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2022;77(3):151-159. (In Russ.)

Views: 470


ISSN 0137-0952 (Print)