Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

Nanoparticles of lactic acid polymer with rifampicin decrease activity of multi-drug transporter P-gp in human macrophages

Abstract

Currently, the problem of effectiveness reduction of the anti-tuberculosis drugs is associated not only with the development of drug resistance by the pathogen, but also with the activity of the multidrug resistance protein P-gp (P-glycoprotein) of macroorganism cells. Rifampicin, the main anti-tuberculosis drug, is a substrate for P-gp. The article presents data on the activity of P-gp in pro-inflammatory human macrophages and assesses the effect of a new form of the anti-tuberculosis drug – rifampicin-loaded lactic acid polymer nanoparticles – on it. Scanning electron microscopy, laser confocal microscopy, MTT test and flow cytometry methods were used. It was shown that the new form of rifampicin is non-toxic for human monocytes and macrophages of the THP-1 cell line. In addition, it activates the processes of endocytosis/ phagocytosis and reduces the functional activity of P-gp. Thus, it seems promising to develop encapsulated anti-tuberculosis drugs – with phagocytosis-activating properties that specifically affect certain features of human macrophages.

About the Authors

M. V. Erokhina
Lomonosov Moscow State University; Central Tuberculosis Research Institute
Russian Federation

Department of Cell Biology and Histology, Faculty of Biology
Department of Pathomorphology

1–12 Leninskie Gory, Moscow, 119234
2 Yauzskaya alleya, Moscow, 107564



E. N. Pavlova
Lomonosov Moscow State University
Russian Federation

Department of Cell Biology and Histology, Faculty of Biology

1–12 Leninskie Gory, Moscow, 119234



E. K. Tarasova
Central Tuberculosis Research Institute
Russian Federation

Department of Pathomorphology

2 Yauzskaya alleya, Moscow, 107564



A. V. Kurynina
Lomonosov Moscow State University
Russian Federation

Department of Cell Biology and Histology, Faculty of Biology

1–12 Leninskie Gory, Moscow, 119234



D. M. Potashnikova
Lomonosov Moscow State University
Russian Federation

Department of Cell Biology and Histology, Faculty of Biology

1–12 Leninskie Gory, Moscow, 119234



L. N. Lepekha
Central Tuberculosis Research Institute
Russian Federation

Department of Pathomorphology

2 Yauzskaya alleya, Moscow, 107564



A. E. Ergeshov
Central Tuberculosis Research Institute
Russian Federation

Department of Pathomorphology

2 Yauzskaya alleya, Moscow, 107564



G. E. Onishchenko
Lomonosov Moscow State University
Russian Federation

Department of Cell Biology and Histology, Faculty of Biology

1–12 Leninskie Gory, Moscow, 119234



References

1. Park M., Satta G., Kon O.M. An update on multidrug-resistant tuberculosis // Clin. Med. 2019. Vol. 19. N 2. P. 135–139.

2. Guoping Y., Guofu W., Liting L., Kaixin Z., Xiaowen C., Yue C. Protective effect of rifampicin loaded by HPMA-PLA nanopolymer on macrophages infected with Mycobacterium tuberculosis // Comput. Math. Methods Med. 2022. Vol. 2022: 784283.

3. Ерохина М.В., Лепеха Л.Н., Рыбалкина Е.Ю., Никоненко Б.В., Бочарова И.В., Эргешов А.Э. Возрастание экспрессии генов множественной лекарственной устойчивости MDR1A/B в клетках легких мышей, инфицированных M. tuberculosis // Вестник ЦНИИТ. 2019. № 2. С. 16–25.

4. Erokhina M., Lepekha L., Rybalkina E., Pavlova E., Tarasov R., Krasnikova E., Ergeshov A. Expression of MDR1 gene encoding P-glycoprotein is significantly increased in active pulmonary tuberculomas // Eur. Respir. J. 2021. Vol. 58. Suppl. 65: PA2467.

5. Jouan E., Le Vee M., Denizot C., Da Violante G., Fardel O. The mitochondrial fluorescent dye rhodamine 123 is a high-affinity substrate for organic cation transporters (OCTs) 1 and 2 // Fundam. Clin. Pharmacol. 2014. Vol. 28. N 1. P. 65–77.

6. Kim H., Barroso M., Samanta R., Greenberger L., Sztul E. Experimentally induced changes in the endocytic traffic of P-glycoprotein alter drug resistance of cancer cells // Am. J. Physiol. 1997. Vol. 273. N 2. P. 687–702.

7. Chen J., Cao L., Cui Y., Tu K., Wang H., Wang L. The exploration of endocytic mechanisms of PLA-PEG nanoparticles prepared by coaxialtri-capillary electrospray-template removal method // Colloids Surf. B. 2018. Vol. 161. P. 10–17.

8. Kalluru R., Fenaroli F., Westmoreland D., et al. Poly(lactide-co-glycolide)-rifampicin nanoparticles efficiently clear Mycobacterium bovis BCG infection in macrophages and remain membrane-bound in phago-lysosomes // J. Cell Sci. 2013. Vol. 126. Pt. 14. P. 3043–3054.

9. da Luz C.M., Boyles M.S., Falagan-Lotsch P., Pereira M.R., Tutumi H.R., de Oliveira Santos E., Martins N.B., Himly M., Sommer A., Foissner I., Duschl A., Granjeiro J.M., Leite P.E.C. Poly-lactic acid nanoparticles (PLA-NP) promote physiological modifications in lung epithelial cells and are internalized by clathrin-coated pits and lipid rafts // J. Nanobiotechnology. 2017. Vol. 15: 11.

10. Vasir J.K., Labhasetwar V. Biodegradable nanoparticles for cytosolic delivery of therapeutics // Adv. Drug Deliv. Rev. 2008. Vol. 59. N 8. P. 718–728.

11. Grigoryeva O.A., Korovina I.V., Gogia B.Sh., Sysoeva V.Yu. Migration properties of adipose-tissue-derived mesenchymal stromal cells cocultured with activated monocytes in vitro // Cell Tissue Biol. 2014. Vol. 8. N 5. Р. 359–367.

12. Genin M., Clement F., Fattaccioli A., Raes M., Michiels C. M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide // BMC Cancer. 2015. Vol. 15: 577.

13. Kurynina A., Erokhina M., Makarevich O., Sysoeva V., Lepekha L., Kuznetsov S., Onishchenko G. Plasticity of human THP–1 cell phagocytic activity during macrophagic differentiation // Biochem. 2018. Vol. 83. N 3. P. 200–214.

14. Mechetner E., Kyshtoobayeva A., Zonis S., Kim H., Stroup R., Garcia R., Parker R.J., Fruehauf J.P. Levels of multidrug resistance (MDR1) P-glycoprotein expression by human breast cancer correlate with in vitro resistance to taxol and doxorubicin // Clin. Cancer Res. 1998. Vol. 4. N 2. P. 389–398.

15. da Silva D., Kaduri M., Poley M., Adir O., Krinsky N., Shainsky-Roitman J., Schroeder A. Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems // Chem. Eng. J. 2018. Vol. 340. P. 9–14.

16. Cardoso M.M., Peca I. N., Lopez T., Gardner R., Bicho A. Double-walled poly-(D,L-lactide-co-glycolide) (PLGA) and poly(L-lactide) (PLLA) nanoparticles for the sustained release of doxorubicin // Polymers (Basel). 2021. Vol. 13. N 19: 3230.

17. Elmowafy E.M., Tiboni M., Soliman M.E. Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles // J. Pharm. Investig. 2019. Vol. 49. N 4. P. 347–380.

18. Erokhina M., Kurynina A., Onishchenko G. Mitochondria are targets for the antituberculosis drug rifampicin in cultured epithelial cells // Biochemistry (Mosc.). 2013. Vol. 78. N 10. P. 1155–1163.

19. Cahill C., Phelan J.J., Keane J. Understanding and exploiting the effect of tuberculosis antimicrobials on host mitochondrial function and bioenergetics // Front. Cell. Infect. Microbiol. 2020. Vol. 10: 493.

20. Aït Moussa L., El Bouazzi O., Serragui S., Soussi Tanani D., Soulaymani A., Soulaymani R. Rifampicin and isoniazid plasma concentrations in relation to adverse reactions in tuberculosis patients: a retrospective analysis // Ther. Adv. Drug Saf. 2016. Vol. 7. N 6. P. 239–247.

21. Basarkar A., Devineni D., Palaniappan R., Singh J. Preparation, characterization, cytotoxicity and transfection efficiency of poly (DL-lactide-co-glycolide) and poly (DL-lactic acid) cationic nanoparticles for controlled delivery of plasmid DNA // Int. J. Pharm. 2007. Vol. 343. N 1–2. P. 247–254.

22. Mattu C., Pabari R. M., Boffito M., Sartori S., Ciardelli G., Ramtoola Z. Comparative evaluation of novel biodegradable nanoparticles for the drug targeting to breast cancer cells // Eur. J. Pharm. Biopharm. 2013. Vol. 85. N 3. Pt. A. P. 463–472.

23. Moorkoth D., Nampoothiri K.M. Synthesis, colloidal properties and cytotoxicity of biopolymer nanoparticles // Appl. Biochem. Biotechnol. 2014. Vol. 174. N 6. P. 2181–2194.

24. He H., Buckley M., Britton B., Mu Y., Warner K., Kumar S., Cory T. J. Polarized macrophage subsets differentially express the drug efflux transporters MRP1 and BCRP, resulting in altered HIV production // Antivir. Chem. Chemother. 2018. Vol. 26: 2040206617745168.

25. Gopisetty M.K., Kovács D., Igaz N., Rónavári A., Bélteky P., Rázga Z., Venglovecz V., Csoboz B., Boros I.M., Kónya Z., Kiricsi M. Endoplasmic reticulum stress: major player in size-dependent inhibition of P-glycoprotein by silver nanoparticles in multidrug-resistant breast cancer cells // J. Nanobiotechnology. 2019. Vol. 17. N 1: 9.

26. Davis T.P., Sanchez-Covarubias L., Tome M.E. P-glycoprotein trafficking as a therapeutic target to optimize CNS drug delivery // Adv. Pharmacol. Sci. 2014. Vol. 71. P. 25–44.

27. Erokhina M., Rybalkina E., Barsegyan G., Onishchenko G., Lepekha L. The toxicity of rifampicin polylactic acid nanoparticles against Mycobacterium bovis BCG and human macrophage THP-1 cell line // IOP Conference Series: Materials Science and Engineering, (vol. 98, N 1, 012017). IOP Publishing, 2015.

28. Ерохина М.В., Лепеха Л.Н., Рыбалкина Е.Ю., Павлова Е.Н., Онищенко Г.Е. Влияние рифампицина и его инкапсулированнойформы на функциональную активность белка множественной лекарственной устойчивости Pgp в миелоидных клетках человека // Вестник ЦНИИТ. 2018. Т. 2. № 2. С. 28–39.

29. Lim Y.H., Tiemann K.M., Hunstad D.A., Elsabahy M., Wooley K.L. Polymeric nanoparticles in development for treatment of pulmonary infectious diseases // Wiley Interdiscip. Rev. Nanomed Nanobiotechnol. 2017. Vol. 8. N 6. P. 842–871


Review

For citations:


Erokhina M.V., Pavlova E.N., Tarasova E.K., Kurynina A.V., Potashnikova D.M., Lepekha L.N., Ergeshov A.E., Onishchenko G.E. Nanoparticles of lactic acid polymer with rifampicin decrease activity of multi-drug transporter P-gp in human macrophages. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2022;77(3):166-172. (In Russ.)

Views: 298


ISSN 0137-0952 (Print)