Characteristics of fast sodium current in isolated quail cardiomyocytes
Abstract
Fast sodium current (INa) provides depolarization of working myocardium and defines the excitability of its cells and the velocity of excitation propagation in the tissue. Alterations in activation and inactivation of INa channels can lead to the onset of various arrhythmias. Cardiac INa is poorly studied in most vertebrate animals (excepting mammals) – including birds which are of great interest for comparative physiology. In the present work we for the first time study the characteristics of fast sodium current in myocardium of adult bird. Using standard patch clamp method, we recorded INa in isolated atrial and ventricular cardiomyocytes of Japanese quail. The current had great amplitude and quickly recovered from inactivation both in atrial and ventricular cells; the fast inactivation time constant of INa in atrial cells was lower than that of ventricular cells. Steady-state activation and inactivation suggest that sodium window current in avian myocardium is less pronounced in comparison to that in mammalian heart. In quail ventricular myocytes the blocker of late sodium current ranolazine caused a slight decrease in peak current amplitude and did not affect inactivation – however, it shifted steady-state inactivation curve towards more negative potentials, shortened action potentials and caused a decrease in maximum upstroke velocity. Thus, the characteristics of INa in quail myocardium reflect an adaptation to high heart rates in birds, and also suggest possible differences in the structure and function of INa channels between birds and mammals.
About the Authors
T. S. FilatovaRussian Federation
Department of Human and Animal Physiology
1–12 Leninskie gory, Moscow, 119234
D. V. Abramochkin
Russian Federation
Department of Human and Animal Physiology
Laboratory of Cardiac Electrophysiology
1–12 Leninskie gory, Moscow, 119234
15A-10 3rd Cherepkovskaya st., Moscow, 121552
References
1. Amin A.S., Asghari-Roodsari A., Tan H.L. Cardiac sodium channelopathies // Pflugers Arch. Eur. J. Physiol. 2010. Vol. 460. N 2. P. 223–237.
2. Asfaw T.N., Bondarenko V.E. A mathematical model of the human cardiac Na + channel // J. Membr. Biol. 2019. Vol. 252. N 1. P. 77–103.
3. Isom L.L., Jongh K.S. De, Patton D.E., Reber B.F.X., Offord J., Charbonneau H., Walsh K., Goldin A.L., Catterall W.A. Primary structure and functional expression of the β1 subunit of the rat brain sodium channel // Science. 1992. Vol. 256. N 5058. P. 839–842.
4. Haufe V., Cordeiro J.M., Zimmer T., Wu Y.S., Schiccitano S., Benndorf K., Dumaine R. Contribution of neuronal sodium channels to the cardiac fast sodium current I Na is greater in dog heart Purkinje fibers than in ventricles // Cardiovasc. Res. 2005. Vol. 65. N 1. P. 117–127.
5. Chadda K.R., Jeevaratnam K., Lei M., Huang C.L.H. Sodium channel biophysics, late sodium current and genetic arrhythmic syndromes // Pflugers Arch. Eur. J. Physiol. 2017. Vol. 469. N 5–6. P. 629–641.
6. Filatova T.S., Abramochkin D. V., Pavlova N.S., Pustovit K.B., Konovalova O.P., Kuzmin V.S., Dobrzynski H. Repolarizing potassium currents in working myocardium of Japanese quail: Novel translational model for cardiac electrophysiology // Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2021. Vol. 255: 110919.
7. Fujii S., Ayer R.K., DeHaan R.L. Development of the fast sodium current in early embryonic chick heart cells // J. Membr. Biol. 1988. Vol. 101. N 1. P. 209–223.
8. Vornanen M., Hassinen M., Haverinen J. Tetrodotoxin sensitivity of the vertebrate cardiac Na+ current // Mar. Drugs. 2011. Vol. 9. N 11. P. 2409–2422.
9. Jensen B., Wang T., Christoffels V.M., Moorman A.F.M. Evolution and development of the building plan of the vertebrate heart // Biochim. Biophys. Acta. Mol. Cell Res. 2013. Vol. 1833. N 4. P. 783–794.
10. Abramochkin D. V., Filatova T.S., Pustovit K.B., Voronina Y.A., Kuzmin V.S., Vornanen M. Ionic currents underlying different patterns of electrical activity in working cardiac myocytes of mammals and non-mammalian vertebrates // Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2022. Vol. 268: 111204.
11. Hassinen M., Abramochkin D. V., Vornanen M. Seasonal acclimatization of the cardiac action potential in the Arctic navaga cod (Eleginus navaga, Gadidae) // J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 2014. Vol. 184. N 3. P. 319–327.
12. Islam M.A., Nojima H., Kimura I. Muscarinic M1 receptor activation reduces maximum upstroke velocity of action potential in mouse right atria. // Eur. J. Pharmacol. 1998. Vol. 346. N 2–3. P. 227–236.
13. Clark R.B., Giles W. Sodium current in single cells from bullfrog atrium: voltage dependence and ion transfer properties // J. Physiol. 1987. Vol. 391. N 1. P. 235–265.
14. Sakakibara Y., Wasserstrom J.A., Furukawa T., Jia H., Arentzen C.E., Hartz R.S., Singer D.H. Characterization of the sodium current in single human atrial myocytes // Circ. Res. 1992. Vol. 71. N 3. P. 535–546.
15. Sakakibara Y., Furukawa T., Singer D.H., Jia H., Backer C.L., Arentzen C.E., Wasserstrom J.A. Sodium current in isolated human ventricular myocytes // Am. J. Physiol. Hear. Circ. Physiol. 1993. Vol. 265. N 4. P. H1301–H1309.
16. Haverinen J., Hassinen M., Korajoki H., Vornanen M. Cardiac voltage-gated sodium channel expression and electrophysiological characterization of the sodium current in the zebrafish (Danio rerio) ventricle // Prog. Biophys. Mol. Biol. 2018. Vol. 138. P. 59–68.
17. Zaza A., Rocchetti M. The late Na+ current – origin and pathophysiological relevance // Cardiovasc. Drugs Ther. 2013. Vol. 27. N 1. P. 61–68.
18. Schneider M., Proebstle T., Hombach V., Hannekum A., Rüdel R. Characterization of the sodium currents in isolated human cardiocytes // Pflügers Arch. 1994. Vol. 428. N 1. P. 84–90.
19. Shander G.S., Fan Z., Makielski J.C. Slowly recovering cardiac sodium current in rat ventricular myocytes: effects of conditioning duration and recovery potential // J. Cardiovasc. Electrophysiol. 1995. Vol. 6. N 10. P. 786–795.
20. Burashnikov A. Late INa inhibition as an antiarrhythmic strategy // J. Cardiovasc. Pharmacol. 2017. Vol. 70. N 3. P. 159–167.
21. Rajamani S., El-Bizri N., Shryock J.C., Makielski J.C., Belardinelli L. Use-dependent block of cardiac late Na+ current by ranolazine // Hear. Rhythm. 2009. Vol. 6. N 11. P. 1625–1631.
22. Zygmunt A.C., Nesterenko V. V., Rajamani S., Hu D., Barajas-Martinez H., Belardinelli L., Antzelevitch C. Mechanisms of atrial-selective block of Na+ channels by ranolazine: I. Experimental analysis of the use-dependent block // Am. J. Physiol. – Hear. Circ. Physiol. 2011. Vol. 301. N 4. P. 1606–1614.
23. Antzelevitch C., Belardinelli L., Zygmunt A.C., Burashnikov A., Di Diego J.M., Fish J.M., Cordeiro J.M., Thomas G. Electrophysiological effects of ranolazine, a novel antianginal agent with antiarrhythmic properties // Circulation. 2004. Vol. 110. N 8. P. 904–910.
24. Carmeliet E. Action potential duration, rate of stimulation, and intracellular sodium // J. Cardiovasc. Electrophysiol. 2006. Vol. 17. Suppl. 1. P. S2–S7.
Review
For citations:
Filatova T.S., Abramochkin D.V. Characteristics of fast sodium current in isolated quail cardiomyocytes. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2022;77(3):173-179. (In Russ.)