Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

Features of the distribution and condition of phytoplankton at different depths in the Kislo-Sladkoe Lake partly isolated from the White Sea

Abstract

Chlorophyll fluorescence methods were used for study of phytoplankton in the Kislo-Sladkoe Lake on the White Sea coast in 2018. In the chemocline (between aerobic and anaerobic zones) of the lake at a depth of 3.3 m a red water layer was observed with chlorophyll a concentration of 1.7 μg/L, despite the presence of hydrogen sulfide. This water layer was dominated by cryptophyte algae (Rhodomonas sp.), in which a high functional activity of the photosynthetic apparatus was observed in terms of the PIABS fluorescence parameter, expressed through high values of the quantum yield of the primary photochemical reaction in PS2 (FV / FM), the proportion of active RCs (RC/ABS), and the quantum yield of electron transport in PS2(φEo). Such a high functional activity of the photosynthetic apparatus of cryptophyte algae in the chemocline may indicate the resistance of cryptophyte algae to the presence of hydrogen sulfide. By comparison, the phytoplankton in the surface water layer showed lower photosynthetic activity. Experiments with photoinhibition showed that the chemocline phytoplankton community is characterized by a greater reparative capacity after photooxidative stress despite the increased photosensitivity. Application of chlorophyll fluorescence methods for study of the state of phytoplankton in stratified meromictic water bodies is proposed.

About the Authors

D. N. Matorin
Lomonosov Moscow State University
Russian Federation

Department of Biophysics

1–12 Leninskie gory, Moscow, 119234



D. A. Todorenko
Lomonosov Moscow State University
Russian Federation

Department of Biophysics

1–12 Leninskie gory, Moscow, 119234



D. A. Voronov
A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences
Russian Federation

127051, Moscow, 19–1 Bol’shoy Karetnyy pereulok



S. N. Goryachev
Lomonosov Moscow State University
Russian Federation

Department of Biophysics

1–12 Leninskie gory, Moscow, 119234



L. B. Bratkovskaya
Lomonosov Moscow State University
Russian Federation

Department of General Ecology and Hydrobiology

1–12 Leninskie gory, Moscow, 119234



E. D. Krasnova
Lomonosov Moscow State University
Russian Federation

N.A. Pertsov White Sea Biological Station, Faculty of Biology

1–12 Leninskie gory, Moscow, 119234



References

1. Krasnova E.D., Pantyulin A.N., Belevich T.A., Voronov D.A., Demidenko N.A., Zhitina L.S., Ilyash L.V., Kokryatskaya N.M., Lunina O.N., Mardashova M.V., Prudkovsky A. A., Savvichev A.S., Filippov A.S., Shevchenko V.P. Multidisciplinary studies of the separating lakes at different stage of isolation from the White Sea performed in march 2012 // Oceanology. 2013. Vol. 53. N 5. P. 714–717.

2. Krasnova E.D. Ecology of meromictic lakes of Russia. 1. Coastal marine waterbodies // Water Resources. 2021. Vol. 48. N 3. P. 427–438.

3. Krasnova E.D., Pantyulin A.N., Matorin D.N., Todorenko D.A., Belevich T.A., Milyutina I.A., Voronov D.A. Blooming of the Cryptomonad alga Rhodomonas sp. (Cryptophyta, Pyrenomonadaceae) in the redox zone of the basins separating from the White Sea // Microbiology. 2014. Vol. 83. N 3. P. 270–277.

4. Krasnova E., Voronov D., Frolova N., Pantyulin A., Samsonov T. Salt lakes separated from the White Sea // EARSeL eProceedings. 2015. Vol. 14. P. 8–22.

5. Krasnova E., Matorin D., Belevich T., Efimova L., Kharcheva A., Kokryatskaya N., Losyuk G., Todorenko D., Voronov D., Patsaeva S. The characteristic pattern of multiple colored layers in coastal stratified lakes in the process of separation from the White Sea // Chin. J. Oceanol. Limnol. 2018. N 6. P. 1–16.

6. Lunina O.N., Savvichev A.S., Kuznetsov B.B., Pimenov N.V., Gorlenko V.M. Anoxigenic phototrophic bacteria of the Kislo-Sladkoe stratified lake (White Sea, Kandalaksha Bay) // Microbiology. 2013. Vol. 82. N 6. P. 815–832.

7. Falkowski P.G., Raven J.A. Aquatic photosynthesis. USA: Princeton University Press, 2007. 488 pp.

8. Suggett D.J., Prášil O., Borowitzka M.A. Chlorophyll a fluorescence in aquatic sciences: methods and applications. Dordrecht: Springer, 2010. 326 pp.

9. Маторин Д.Н., Рубин А.Б. Флуоресценция хлорофилла высших растений и водорослей. Ижевск-Москва: Ижевский институт компьютерных исследований, 2012. 256 с.

10. Strasser R.J., Tsimilli-Michael M., Srivastava A. Analysis of the chlorophyll a fluorescence transient // Chlorophyll a fluorescence. Advances in photosynthesis and respiration, vol. 19 / Eds. C. Papageorgiou and Govindjee. Dordrecht: Springer, 2004. P. 321–362.

11. Lazár D., Schansker G. Models of chlorophyll a fluorescence transients // Photosynthesis in silico / Eds. A. Laisk, L. Nedbal, and Govindjee. Dordrecht: Springer, 2009. P. 85–123.

12. Kalaji H.M., Schansker G., Ladle R. J., Kalaji V., Bosa K., Allakhverdiev S., Elsheery N.I. Frequently asked questions about in vivo chlorophyll fluorescence: practical issues // Photosynth. Res. 2014. Vol. 122. N 2. P. 121–158.

13. Schreiber U. Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview // Chlorophyll a fluorescence. advances in photosynthesis and respiration / Eds. G.C. Papageorgiou and Govindjee. Dordrecht: Springer, 2004. P. 279–319.

14. Serôdio J., Vieira S., Cruz S., Barroso F. Short-term variability in the photosynthetic activity of micro-phytobenthos as detected by measuring rapid light curves using variable fluorescence // Mar. Biol. 2005. Vol. 146. P. 903–914.

15. Ralph P.J., Gademann R. Rapid light curves: a powerful tool to assess photosynthetic activity // Aquat Bot. 2005. Vol. 82. N 3. P. 222–237.

16. Matorin D., Antal T., Ostrowska M., Rubin A., Ficek D., Majchrowski R. Chlorophyll fluorimetry as a method for studying light absorption by photosynthetic pigments in marine algae // Oceanologia. 2004. Vol. 46. N 4. P. 519–531.

17. Mosharov S.A., Sergeeva V.M., Sazhin A.F., Kremenetskiy V.V., Stepanova S.V. Assessment of phytoplankton photosynthetic efficiency based on measurement of fluorescence parameters and radiocarbon uptake in the Kara Sea // Estuar. Coast. Shelf Sci. 2019. Vol. 218. P. 59–69.

18. Chow W.S., Aro E.-M. Photoinactivation and mechanisms of recovery // Photosystem II. Advances in photosynthesis and respiration / Eds. T.J. Wydrzynski, K. Satoh, and J.A. Freeman. Dordrecht: Springer. 2005. P. 627–648.

19. Vavilin D.V, Polynov V.A, Matorin D.N, Venediktov P.S. Sublethal concentrations of copper stimulate photosystem II photoinhibition in Chlorella pyrenoidosa // J. Plant Physiol. 1995. Vol. 146. N 5–6. P. 609–614.


Review

For citations:


Matorin D.N., Todorenko D.A., Voronov D.A., Goryachev S.N., Bratkovskaya L.B., Krasnova E.D. Features of the distribution and condition of phytoplankton at different depths in the Kislo-Sladkoe Lake partly isolated from the White Sea. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2022;77(3):180-187. (In Russ.)

Views: 292


ISSN 0137-0952 (Print)