Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

Vitamin K2 mediates electron transport from NADH dehydrogenase 2 to bd-type quinol oxidase in Lacticaseibacillus rhamnosus CM MSU 529

Abstract

Тo activate respiratory metabolism Lacticaseibacillus rhamnosus CM MSU 529 was grown in a batch culture under intensive aeration in the presence of 38 μM hemin and 18 μM vitamin K2 as a source of menaquinone. Unsupplemented aerobic culture served as a control. Supplementation of the growth medium with hemin or menaquinone separately had no significant effect on culture growth. Biomass concentration of 2,86 ± 0,05 g dw cells/l and the yield coefficient for biomass YP/S of 25,6 ± 1,5 g dw cells/mol glucose consumed were determined after 24 h and 18 h of cultivation under respiratory conditions (hemin + K2) respectively. Both values were 27% higher compared to those for aerobic conditions. Spectral analysis revealed the presence of cytochromes b- and d-type in membranes of L. rhamnosus CM MSU 529. The activity of bacterial electron transport chain was investigated by polarographic technique. Membrane preparations obtained from cells grown aerobically on hemin-containing medium intensively consumed oxygen in the presence of 1 mM NADH. Addition of 0.2 mM menaquinone to reaction mixture caused the increase of NADH oxidation rate by 4.6 fold. Enzymes presumably involved in NADH oxidation by membranes were identified using MALDI-TOF MS/MS: pyridine nucleotide-disulfide oxidoreductase (Nox-2), NADH dehydrogenase 2 (Ndh-2), and ubiquinol oxidase bd subunit I (CydA). Thus, during NADH oxidation 80% of electron transport from NADH to oxygen went via Ndh-2, menaquinone, bd-type quinol oxidase and only 20% – via Nox-2. The study presents experimental evidence for electron transport chain functioning in L. rhamnosus CM MSU 529 during aerobic cultivation with hemin and menaquinone. The NADH oxidation rates of membrane preparations of lactic acid bacteria were measured for the first time. The property of exogenous menaquinone to transfer electrons from Ndh-2 to bd-type quinol oxidase was demonstrated for the first time in vitro in lactic acid bacteria.

About the Authors

T. Y. Dinarieva
Lomonosov Moscow State University
Russian Federation

Department of Microbiology, Faculty of Biology

1–12 Leninskie Gory, Moscow, 119234



A. I. Klimko
Lomonosov Moscow State University
Russian Federation

Department of Microbiology, Faculty of Biology

1–12 Leninskie Gory, Moscow, 119234



T. A. Cherdyntseva
Lomonosov Moscow State University
Russian Federation

Department of Microbiology, Faculty of Biology

1–12 Leninskie Gory, Moscow, 119234



A. L. Bryukhanov
Lomonosov Moscow State University
Russian Federation

Department of Microbiology, Faculty of Biology

1–12 Leninskie Gory, Moscow, 119234



A. I. Netrusov
Lomonosov Moscow State University; High School of Economics
Russian Federation

Department of Microbiology, Faculty of Biology
Faculty of Biology and Biotechnology

1–12 Leninskie Gory, Moscow, 119234
Mjasnitskaja 20, Moscow, 101000



References

1. Hill C., Guarner F., Reid G., Gibson G.R., Merenstein D.J., Pot B., Morelli L., Canani R.B., Flint H.J., Salminen S., Calder P.C., Sanders M.E. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic // Nat. Rev. Gastroenterol. Hepatol. 2014. Vol. 11. N 8. P. 506–514.

2. Moslem P., Hossein N., Mahdi R., Seyed N.H., Seyed A.S. Lactobacillus rhamnosus Gorbach-Goldin (GG): a top well-researched probiotic strain // J. Med. Microbiol. 2017. Vol. 5. N 5–6. P. 46–59.

3. Pedersen M.B., Gaudu P., Lechardeur D., Petit M.A., Gruss A. Aerobic respiration metabolism in lactic acid bacteria and uses in biotechnology // Annu. Rev. Food Sci. Technol. 2012. Vol. 3. P. 37–58.

4. Arioli S., Zambelli D., Guglielmetti S., De Noni I., Pedersen M.B., Pedersen P.D., Dal Bello F., Mora D. Increasing the heme-dependent respiratory efficiency of Lactococcus lactis by inhibition of lactate dehydrogenase // Appl. Environ. Microbiol. 2013. Vol. 79. N 1. P. 376–380.

5. Ianniello R.G., Zotta T., Matera A., Genovese F., Parente E., Ricciardi A. Investigation of factors affecting aerobic and respiratory growth in the oxygen-tolerant strain Lactobacillus casei N87 // PLoS One. 2016. Vol. 11. N 11: e0164065.

6. Zotta T., Parente E., Ricciardi A. Aerobic metabolism in the genus Lactobacillus: impact on stress response and potential applications in the food industry // J. Appl. Microbiol. 2017. Vol. 122. N 4. P. 857–869.

7. Siciliano R.A. Pannella G., Lippolis R., Ricciardi A., Mazzeo M. F., Zotta T. Impact of aerobic and respirative life-style on Lactobacillus casei N87 proteome // Int. J. Food Microbiol. 2019. Vol. 298. P. 51–62.

8. Johanson A., Goel A., Olsson L., Franzén C.J. Respiratory physiology of Lactococcus lactis in chemostat cultures and its effect on cellular robustness in frozen and freeze-dried starter cultures // Appl. Environ. Microbiol. 2020. Vol. 86. N 6: e02785–19.

9. Klimko A.I., Cherdyntseva T.A., Brioukhanov A.L., Netrusov A.I. In vitro evaluation of probiotic potential of selected lactic acid bacteria strains // Probiotics Antimicrob. Proteins. 2020. Vol. 12. N 3. P. 1139–1148.

10. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding // Anal. Biochem. 1976. Vol. 72. P. 248–254.

11. Teteneva N.A., Mart’yanov S.V., Esteban-López M., Kahnt J., Glatter T., Netrusov A.I., Plakunov V.K., Sourjik V. Multiple drug-induced stress responses inhibit formation of Escherichia coli biofilms // Appl. Environ. Microbiol. 2020. Vol. 86. N 21: e01113–20.

12. Wagner T., Wegner C.E., Kahnt J., Ermler U., Shima S. Phylogenetic and structural comparisons of the three types of methyl coenzyme M reductase from Methanococcales and Methanobacteriales // J. Bacteriol. 2017. Vol. 199. N 16: e00197–17.

13. Eng J.K., McCormack A.L., Yates J.R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database // J. Am. Soc. Mass Spectrom. 1994. Vol. 5. N 11. P. 976–989.

14. Ianniello R.G., Zheng J., Zotta T., Ricciardi A., Gänzle M.G. Biochemical analysis of respiratory metabolism in the heterofermentative Lactobacillus spicheri and Lactobacillus reuteri // J. Appl. Microbiol. 2015. Vol. 119. N 3. P. 763–775.

15. Sakamoto J., Koga E., Mizuta T., Sato C., Noguchi S., Sone N. Gene structure and quinol oxidase activity of a cytochrome bd-type oxidase from Bacillus stearothermophilus // Biochim. Biophys. Acta. 1999. Vol. 1411. N 1. P. 147–158.

16. Averina O.V., Poluektova E.U., Marsova M.V., Danilenko V.N. Biomarkers and utility of the antioxidant potential of probiotic lactobacilli and bifidobacteria as representatives of the human gut microbiota // Biomedicines 2021, Vol. 9. N 10: e1340.

17. Marreiros B.C., Sena F.V., Sousa F.M., Batista A.P.,Manuela M. Pereira M.M. Type II NADH: quinone oxidoreductase family: phylogenetic distribution, structural diversity and evolutionary divergences // Environ. Microbiol. 2016. Vol. 18. N 12. P. 4697–4709.


Review

For citations:


Dinarieva T.Y., Klimko A.I., Cherdyntseva T.A., Bryukhanov A.L., Netrusov A.I. Vitamin K2 mediates electron transport from NADH dehydrogenase 2 to bd-type quinol oxidase in Lacticaseibacillus rhamnosus CM MSU 529. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2022;77(3):188-194. (In Russ.)

Views: 272


ISSN 0137-0952 (Print)