Mechanisms of the White Sea cod Gadus morhua marisalbi (Gadidae) intestinal smooth muscle cholinergic contraction: the contribution of various subtypes of M-cholinergic receptors and Rho-kinase
https://doi.org/10.55959/MSU0137-0952-16-2022-77-4-231-240
Abstract
The study of the functioning of various body systems in different vertebrates is one of the key tasks of comparative physiology. Teleost fish are a large group of vertebrates, however, the mechanisms of functioning of their digestive tract have been studied little and mainly only for such a model object as Danio rerio. The aim of this work was to characterize the participation of various subtypes of M-cholinergic receptors and the enzyme Rho-kinase in the cholinergic contraction of the intestinal smooth muscles of the White Sea cod Gadus morhua marisalbi (Gadidae). A longitudinal strip was excised from the proximal cod intestine and placed in an apparatus for recording contractile responses in the isometric mode. Contractile responses to acetylcholine were completely blocked by atropine. Blockade of M3 cholinergic receptors with 4-DAMP resulted in a decrease in acetylcholine-induced contraction compared with the control response. Blockade of M1 receptors with pirenzepine led to a weakening of contraction, less pronounced than with blockade of M3 cholinergic receptors. Blockade of M2-cholinergic receptors with methoctramine did not affect the magnitude of the contractile response. Incubation of preparations with the Rho-kinase inhibitor fasudil was accompanied by a significant decrease in contractile responses compared with the control, as well as a faster decrease in the contraction force after reaching the “peak” of the reaction. Thus, acetylcholine causes contraction of cod intestinal smooth muscle by activating M3- and M1- but not M2-cholinergic receptors. The activity of the Rho-kinase enzyme contributes to the development and maintenance of cod intestinal smooth muscle contraction under the action of acetylcholine. The results obtained are of interest for comparative physiology, may be important for understanding the mechanisms of the damaging effect of environmental factors on the bony fish’ body, as well as for the use of fish as objects of preclinical studies of drugs.
About the Authors
A. A. ShvetsovaRussian Federation
Department of Human and Animal Physiology
1–12 Leninskie gory, Moscow, 119234
G. V. Morgunova
Russian Federation
Evolutionary Cytogerontology Sector, School of Biology
1–12 Leninskie gory, Moscow, 119234
E. A. Novoderezhkina
Russian Federation
Department of Human and Animal Physiology
1–12 Leninskie gory, Moscow, 119234
V. M. Potekhina
Russian Federation
Department of Human and Animal Physiology
1–12 Leninskie gory, Moscow, 119234
A. A. Kamensky
Russian Federation
Department of Human and Animal Physiology
1–12 Leninskie gory, Moscow, 119234
O. S. Tarasova
Russian Federation
Department of Human and Animal Physiology
1–12 Leninskie gory, Moscow, 119234
References
1. Shahjahan M. Taslima K., Rahman M.S., Al- Emran M., Alam S.I., Faggio С. Effects of heavy metals on fish physiology – A review // Chemosphere. 2022. Vol. 300: 134519.
2. Pasparakis C., Esbaughb A.J., Burggrenc W., Grosella M. Impacts of deepwater horizon oil on fish // Comp. Biochem. Physiol. Part – C: Toxicol. Pharmacol. 2019. Vol. 224: 108558.
3. Cueto-Escobedo J., German-Ponciano L.J., Guillén- Ruiz G., Soria-Fregozo C., Herrera-Huerta E.V. Zebrafish as a useful tool in the research of natural products with potential anxiolytic effects // Front. Behav. Neurosci. 2022. Vol. 15: 795285.
4. Karila P., Shahbazi F., Jensen J., Holmgren S. Projections and actions of tachykininergic, cholinergic, and serotonergic neurones in the intestine of the Atlantic cod // Cell Tissue Res. 1998. Vol. 291. N 3. P. 403–413.
5. Olsson C., Holmgren S. Autonomic control of gut motility: A comparative view // Auton. Neurosci. Basic Clin. 2011. Vol. 165. N 1. P. 80–101.
6. Jensen J., Holmgren S. Neurotransmitters in the intestine of the atlantic cod, Gadus morhua // Comp. Biochem. Physiol. Part – C: Toxicol. Pharmacol. 1985. Vol. 82. N 1. P. 81–89.
7. Gómez A., Martos F., Bellido I., Marquez E., Garcia A. J., Pavia J., de la Cuesta F.S. Muscarinic receptor subtypes in human and rat colon smooth muscle // Biochem. Pharmacol. 1992. Vol. 43. N 11. P. 2413–2419.
8. Unno T., Matsuyama H., Sakamoto T., Uchiyama M., Izumi Y., Okamoto H., Yamada M., Wess J., Komori S. M2 and M3 muscarinic receptor-mediated contractions in longitudinal smooth muscle of the ileum studied with receptor knockout mice // Br. J. Pharmacol. 2005. Vol. 146. N 1. P. 98–108.
9. Kerr P.M., Hillier K., Wallis R.M., Garland C.J. Characterization of muscarinic receptors mediating contractions of circular and longitudinal muscle of human isolated colon // Br. J. Pharmacol. 1995. Vol. 115. N 8. P. 1518–1524.
10. Ehlert F.J. Contractile role of M2 and M3 muscarinic receptors in gastrointestinal, airway and urinary bladder smooth muscle // Life Sci. 2003. Vol. 74. N 2–3. P. 355–366.
11. Hu X.Q., Zhang L. Functon and regulation of large conductance Ca2+ activated K+ channel in vascular smooth muscle cells // Drug Discov. Today. 2012. Vol. 17. N 17–18. P. 974–987.
12. Tanahashi Y., Komori S., Matsuyama H., Kitazawa T., Unno T. Functions of muscarinic receptor subtypes in gastrointestinal smooth muscle: A review of studies with receptor-knockout mice // Int. J. Mol. Sci. 2021. Vol. 22. N 2. P. 1–24.
13. Tran J.A., Matsui M., Ehlert F.J. Differential coupling of muscarinic M1, M2, and M3 receptors to phosphoinositide hydrolysis in urinary bladder and longitudinal muscle of the ileum of the mouse // J. Pharmacol. Exp. Ther. 2006. Vol. 318. N 2. P. 649–656.
14. Glaza I. Szadujkis-Szadurski L., Szadujkis- Szadurski R., Gajdus M., Olkowska J. Modulating activity of M1 receptor to the reaction of ileal smooth muscle // Postepy Hig. Med. Dosw. 2011. Vol. 65. P. 478–481.
15. Menozzi A., Pozzoli C., Poli E., Bontempi G., Serventi P., Meucci V., Intorre L., Bertini S. Role of muscarinic receptors in the contraction of jejunal smooth muscle in the horse: An in vitro study // Res. Vet. Sci. 2017. Vol. 115. P. 387–392.
16. Karaki H., Weiss G.B. Calcium release in smooth muscle // Life Sci. 1988. Vol. 42. N 2. P. 111–122.
17. Somlyo A.P., Somlyo A.V. Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase // Physiol. Rev. 2003. Vol. 83. N 4. P. 1325–1358.
18. Sahin L., Cevik O.S., Koyuncu D.D., Buyukafsar K. Role of rho-kinase (ROCK) in tonic but not phasic contraction in the frog stomach smooth muscle // Life Sci. 2018. Vol. 198. P. 46–55.
19. Loirand G., Cario-Toumaniantz C., Chardin P., Pacaud P. The Rho-related protein Rnd1 inhibits Ca2+ sensitization of rat smooth muscle // J. Physiol. 1999. Vol. 516. N 3. P. 825–834.
20. Swärd K., Dreja K., Susnjar M., Hellstrand P., Hartshorne D.J. Walsh M.P. Inhibition of Rho-associated kinase blocks agonist-induced Ca2+ sensitization of myosin phosphorylation and force in guinea-pig ileum // J. Physiol. 2000. Vol. 522. N 1. P. 33–49.
21. Bayguinov O., Dwyer L., Kim H., Marklew A., Sanders K. M., Koh S.D. Contribution of Rho-kinase to membrane excitability of murine colonic smooth muscle // Br. J. Pharmacol. 2011. Vol. 163. N 3. P. 638–648.
22. Park S.Y., Song H.J., Sohn U.D. Participation of Rho-associated kinase in electrical stimulated and acetylcholine-induced contraction of feline esophageal smooth muscle // Eur. J. Pharmacol. 2009. Vol. 607. N 1–3. P. 220–225.
23. Rattan S., Phillips B.R., Maxwell P.J. RhoA/Rho- Kinase: pathophysiologic and therapeutic implications in gastrointestinal smooth muscle tone and relaxation // Gastroenterology. 2010. Vol. 138. N 1. P. 13–18.
24. Андрияшев А.П. Рыбы северных морей СССР. М.; Л.: Изд-во Акад. наук СССР, 1954. 567 с.
25. Kitazawa T., Itoh K., Yaosaka N., Maruyama K., Matsuda K., Teraoka H., Kaiya H. Ghrelin does not affect gastrointestinal contractility in rainbow trout and goldfish in vitro // Gen. Comp. Endocrinol. 2012. Vol. 178. N 3. P. 539–545.
26. Kitazawa T., Hoshi T., Chugun A. Effects of some autonomic drugs and neuropeptides on the mechanical activity of longitudinal and circular muscle strips isolated from the carp intestinal bulb (Cyprinus carpio) // Comp. Biochem. Physiol. Part – C: Toxicol. Pharmacol. 1990. Vol. 97. N 1. P. 13–24.
27. Karila P., Holmgren S. Enteric reflexes and nitric oxide in the fish intestine // J. Exp. Biol. 1995. Vol. 198. N 11. P. 2405–2411.
28. Harrington A.M., Peck C.J., Liu L., Burcher E., Hutson J. M., Southwell B.R. Localization of muscarinic receptors M1R, M2R and M3R in the human colon // Neurogastroenterol. Motil. 2010. Vol. 22. N 9: 999–e263.
29. Honda K., Takano Y., Kamiya H. Pharmacological profiles of muscarinic receptors in the longitudinal smooth muscle of guinea pig ileum // Jpn. J. Pharmacol. 1993. Vol. 62. N 1. P. 43–47.
30. Tobin G., Giglio D., Lundgren O. Muscarinic receptor subtypes in the alimentary tract // J. Physiol. Pharmacol. 2009. Vol. 60. N 1. P. 3–21.
31. Hu J., Gao W.Y., Ma L., Man S.L., Huang L.Q., Liu C.X. Activation of M3 muscarinic receptor and Ca2+ influx by crude fraction from Crotonis Fructus in isolated rabbit jejunum // J. Ethnopharmacol. 2012. Vol. 139. N 1. P. 136–141.
32. Harrington A.M., Hutson J.M., Southwell B.R. Cholinergic neurotransmission and muscarinic receptors in the enteric nervous system // Prog. Histochem. Cytochem. 2010. Vol. 44. N 4. P. 173–202.
33. Uchiyama T., Chess-Williams R. Muscarinic receptor subtypes of the bladder and gastrointestinal tract // J. Smooth Muscle Res. 2004. Vol. 40. N 6. P. 237–247.
34. Unno T., Matsuyama H., Izumi Y., Yamada M., Wess J., Komori S. Roles of M2 and M3 muscarinic receptors in cholinergic nerve-induced contractions in mouse ileum studied with receptor knockout mice // Br. J. Pharmacol. 2006. Vol. 149. N 8. P. 1022–1030.
35. Griffin M.T., Matsui M., Ostrom R.S., Ehlert F.J. The guinea pig ileum lacks the direct, high-potency, M2-muscarinic, contractile mechanism characteristic of the mouse ileum // Naunyn. Schmiedebergs. Arch. Pharmacol. 2009. Vol. 380. N 4. P. 327–335.
36. Griffin M.T., Ehlert F.J. Specific inhibition of isoproterenol-stimulated cyclic AMP accumulation by M2 muscarinic receptors in rat intestinal smooth muscle // J. Pharmacol. Exp. Ther. 1992. Vol. 263. N 1. P. 221–225.
37. Reddy H., Watson N., Ford A.P.D.W., Eglen R.M. Characterization of the interaction between muscarinic M2 receptors and β-adrenoceptor subtypes in guinea-pig isolated ileum // Br. J. Pharmacol. 1995. Vol. 114. N 1. P. 49–56.
38. North R.A., Slack B.E., Surprenant A. Muscarinic M1 and M2 receptors mediate depolarization and presynaptic inhibition in guinea-pig enteric nervous system // J. Physiol. 1985. Vol. 368. N 1. P. 435–452.
39. Harrington A.M., Hutson J.M., Southwell B.R. Immunohistochemical localisation of cholinergic muscarinic receptor subtype 1 (M1r) in the guinea pig and human enteric nervous system // J. Chem. Neuroanat. 2007. Vol. 33. N 4. P. 193–201.
40. Delvalle N.M., Fried D.E., Rivera-Lopez G., Gaudette L., Gulbransenet B.D. Cholinergic activation of enteric glia is a physiological mechanism that contributes to the regulation of gastrointestinal motility // Am. J. Physiol. – Gastrointest. Liver Physiol. 2018. Vol. 315. N 4. P. G473–G483.
41. Takeuchi T., Fujinami K., Goto H., Fujita A., Taketo M.M., Manabe T., Matsui M., Hataet F. Roles of M2 and M4 muscarinic receptors in regulating acetylcholine release from myenteric neurons of mouse ileum // J. Neurophysiol. 2005. Vol. 93. N 5. P. 2841–2848.
42. Patel C.A., Rattan S. Spontaneously tonic smooth muscle has characteristically higher levels of RhoA/ROK compared with the phasic smooth muscle // Am. J. Physiol. – Gastrointest. Liver Physiol. 2006. Vol. 291. N 5. P. 830–837.
43. Shabir S., Borisova L., Wray S., Burdyga T. Rhokinase inhibition and electromechanical coupling in rat and guinea-pig ureter smooth muscle: Ca2+-dependent and -independent mechanisms // J. Physiol. 2004. Vol. 560. N 3. P. 839–855.
44. Kim B.J., Jeon J.H., Kim S.J., So I. Role of calmodulin and myosin light chain kinase in the activation of carbachol-activated cationic current in murine ileal myocytes // Can. J. Physiol. Pharmacol. 2007. Vol. 85. N 12. P. 1254–1262.
Review
For citations:
Shvetsova A.A., Morgunova G.V., Novoderezhkina E.A., Potekhina V.M., Kamensky A.A., Tarasova O.S. Mechanisms of the White Sea cod Gadus morhua marisalbi (Gadidae) intestinal smooth muscle cholinergic contraction: the contribution of various subtypes of M-cholinergic receptors and Rho-kinase. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2022;77(4):231-240. (In Russ.) https://doi.org/10.55959/MSU0137-0952-16-2022-77-4-231-240