Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

ASSOCIATIONS BETWEEN WHITE SEA INVERTEBRATES AND OXYGEN-EVOLVING PHOTOTROPHIC MICROORGANISMS

https://doi.org/10.1234/XXXX-XXXX-2009-1-18-25

Abstract

Eleven species of White Sea invertebrates (sponges, actinians, hydroids, polychaetes and nudibranch molluscs) were tested for the presence of associated oxygen-evolving phototrophic microorganisms (OPM) (microalgae and cyanobacteria). Two main approaches were applied: a) light and electron microscopy of intact samples and fixed preparations of invertebrates, b) isolation of microorganisms from the invertebrate samples after mild surface sterilisation. The obtained results allow us to draw the conclusion on the formation of multi-component associations by White Sea invertebrates and OPM, based upon the following data: 1) the isolation of 27 cultures of OPM from eight species of invertebrates (sponges, hydroids, polychaete trochophore larva); 2) the species-specificity of association between epibiontic microorganism communities and macroorganisms within the same biotope; 3) spatial integration of micro- and macro-partners resulting in the formation of morphological structures within interorganismic contact zones.

About the Authors

O. A. Gorelova

Russian Federation


I. A. Kossevitch

Russian Federation


O. I. Baulina

Russian Federation


T. A. Fedorenko

Russian Federation


A. Z. Torshhoeva

Russian Federation


E. S. Lobakova

Russian Federation


References

1. Горелова О.А., Косевич И.А., Федоренко Т.А., Баулина О.И., Лобакова Е.С. 2007. Симбиозы беспозвоночных животных Белого моря с фототрофными микроорганизмами // Мат-лы конф. “Фундаментальные и прикладные аспекты исследования симбиотических систем”. Саратов, 25—27 сентября 2007 г. Саратов. С. 16.

2. Громов Б.В. 1965. Коллекция культур водорос-лей Биологического института Ленинградского университета: Тр. Петергоф. ин-та // Вопр. микробиол. № 19. 125—130.

3. Заика В.Е. 1991. Симбиоз водных животных с водорослями. Киев.

4. Орлеанский В.К., Герасименко Л.М. 1982. Лабораторное моделирование термофильного цианобактериального сообщества // Микробиология. 51.№4. 538—542.

5. Пятаева С.В., Косевич И.А., Лобакова Е.С. 2006. Эндосимбионты колониальных гидроидов // Тр. Беломор. биостанции биол. ф-та МГУ. Т. 10. М. С. 168—179.

6. Apprill A.M., Gates R.D. 2007. Recognizing diversity in coral symbiotic dinoflagellate communities // Mol. Ecol. 16. N 6. 1127—1134.

7. Carpenter E.J., Foster R.A. 2002. Marine cyanobacterial symbioses / Cyanobacteria in symbiosis / Eds. A.N. Rai, B. Bergman, U. Rasmussen. Dordrecht. P. 11—17.

8. Ishikura M., Hagiwara K., Takishita K., Haga M., Iwai K., Maruyama T. 2004. Isolation of new Symbiodinium strains from tridacnid giant clam (Tridacna crocea) and sea slug (Pteraeolidia ianthina) using culture medium containing giant clam tissue homogenate // Mar Biotechnol. (NY). 6. N 4. 378—385.

9. Kossevitch I.A., Herrmann K., Ber -king S. 2001. Shaping of colony elements in Laomedea flexuosa Hinks (Hydrozoa, Thecaphora) includes a temporal and spatial control of skeleton hardening // Biol. Bull. 201. N 3. 417—423.

10. K ь hl M., Chen M., Ralph P.J., Schrei -ber U., Larkum A.W. 2005. Ecology: a niche for cyanobacteria containing chlorophyll d // Nature. 433 (7028). 820.

11. Loram J.E., Trapido-Rosenthal H.G., Douglas A.E. 2007. Functional significance of genetically different symbiotic algae Symbiodinium in a coral reef symbiosis // Mol. Ecol. 16. 4849—4857.

12. Maruyama T., Ishikura M., Yamazaki S., Kanai S. 1998. Molecular phylogeny of zooxanthellate bivalves // Biol. Bull. 195. N 1. 70—77.

13. Merzlyak M.N., Razi Naqvi K. 2000. On recording the true absorption spectrum and the scattering spectrum of a turbid sample: application to cell suspensions of the cyanobacterium Anabaena variabilis // J. Photochem. and Photobiol. B: Biology. 58. 123—129.

14. Millonig G. 1964. Study on the factors which influence preservation of fine structure // Symposium on electron microscopy, Consiglio Nazionale delle Ricerche / Ed. P. Buf-fa. Roma. P. 347.

15. Mujer C.V., Andrews D.L., Manhart J.R., Pierces S.K., Rumpho M.E. 1996. Chloroplast genes are expressed during intracellular symbiotic association of Vaucheria litorea plastids with the sea slug Elysia chlorotica // Proc. Natl. Acad. Sci. USA. 93. 12333—12338.

16. Reynolds E.S. 1963. The use of lead citrate of high pH as an electron opaque strain in electron microscopy // J. Cell. Biol. 17. N 5. 208—212.

17. Rumpho M. E., Summer E. J., Manhart J.R. 2000. Solar-powered sea slugs. Mollusc/algal chloroplast symbiosis // Plant Physiology. 123. 29—38.

18. Smith D.C. 1991. Why do so few animals form endosymbiotic associations with photosynthetic microbes? // Phil. Trans. R. Soc. Lond. 333. 225—230.

19. Stanier R.Y., Kunisava R., Mandell M., Cohen-Bazire G. 1971. Purification and properties of unicellular blue-green algae (order Chroococcales) // Bact. Rev. 35. 171—205.

20. Taylor M.W., Radax R., Steger D., Wag -n e r M . 2007. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential // Microbiol. and Molecular Biol. Rev. 71. N 2. 295—347.


Review

For citations:


Gorelova O.A., Kossevitch I.A., Baulina O.I., Fedorenko T.A., Torshhoeva A.Z., Lobakova E.S. ASSOCIATIONS BETWEEN WHITE SEA INVERTEBRATES AND OXYGEN-EVOLVING PHOTOTROPHIC MICROORGANISMS. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2009;(1):18-25. https://doi.org/10.1234/XXXX-XXXX-2009-1-18-25

Views: 425


ISSN 0137-0952 (Print)