Preview

Вестник Московского университета. Серия 16. Биология

Расширенный поиск

Взаимодействие нейротрансмиттеров с микроводорослями: концептуальные и практические аспекты

https://doi.org/10.55959/MSU0137-0952-16-78-3-10

Аннотация

Нейротрансмиттеры (нейромедиаторы), помимо своих функций в нервной системе животных, функционируют как регуляторные и сигнальные агенты у представителей различных царств живого. Многие нейротрансмиттеры в низких концентрациях оказывают значительное воздействие на микроводоросли, во многих случаях выступая как стимуляторы роста их культур. Усиливая накопление биомассы микроводорослей и синтез ими липидов, углеводов и других ценных продуктов, нейромедиаторы представляют потенциальный интерес с биотехнологической точки зрения – в рамках проектов по получению «водорослевых» лекарств, пищевых добавок, а также биодизеля и других видов биотоплива. Будучи способными к синтезу нейротрансмиттеров и/или стимулируя их синтез микробиотой желудочно-кишечного тракта, некоторые виды микроводорослей могут способствовать физическому и психическому здоровью людей. Микроводоросли способны к нейропротекторному действию, и в то же время многие из них выделяют токсины, влияющие на деятельность нервной системы.

Об авторах

А. В. Олескин
Московский государственный университет
Россия

Олескин Александр Владимирович – докт. биол. наук, проф. кафедры общей экологии и гидробиологии биологического факультета

119234, г. Москва, Ленинские горы, д. 1, стр. 12, Москва, тел. 8-903-507-22-58



Ц. Боян
Университет МГУ-ППИ в Шэньчжэне
Китай

Боян Цао – аспирант кафедры общей экологии и гидробиологии биологического факультета. Тел.: 8-916-363-30-05

518172, район Лунган, Даюньсиньчэн, ул. Гоцзидасюеюань, д. 1



Список литературы

1. Дубынин В.А., Каменский А.А., Сапин М.Р., Сивоглазов В.Н. Регуляторные системы организма человека. М.: Дрофа; 2010. 368 с.

2. Buznikov G.A. Preneural transmitters as regulators of embryogenesis. Current state of problem. Russ. J. Dev. Biol. 2007;38(4):213–220.

3. Roshchina V.V. Evolutionary considerations of neurotransmitters in microbial, plant, and animal cells. Microbial Endocrinology: Interkingdom Signaling in Infectious Disease and Health. Eds. M. Lyte and P.P.E. Freestone. N.Y.: Springer; 2010:17–52.

4. Roshchina V.V. New trends in perspectives in the evolution of neurotransmitters in microbial, plant, and animal cells. Microbial Endocrinology: Interkingdom Signaling in Infectious Disease and Health Advances in Experimental Biology and Medicine. Ed. M. Lyte. N.Y.: Springer; 2016:25–72.

5. Oleskin A.V., Postnov A.L. Neurotransmitters as communicative agents in aquatic ecosystems. Moscow Univ. Biol. Sci. Bull. 2022;77(1):6–12.

6. Pasteels J.M. Ecomones: messages chimiques des écosystèmes. Ann. Soc. R. Zool. Belg. 1972:103–117.

7. Pasteels J.M. Is kairomone a valid and useful term? J. Chem. Ecol. 1982;8(7):1079–1081.

8. Ronga D., Biazzi E., Parati K., Carminati D., Carminati E., Tava A. Microalgal biostimulants and biofertilisers in crop productions. Agronomy. 2019;9(4):192.

9. Oleskin A.V., Boyang C. Microalgae in terms of biomedical technology: probiotics, prebiotics, and metabiotics. Appl. Biochem. Microbiol. 2022;58(6):635–648.

10. Van Alstyne K.L., Ridgway R.L., Nelson A. Neurotransmitters in marine and freshwater algae. Neurotransmitters in Plants: Perspectives and Applications. Eds. A. Ramakrishna and V.V. Roshchina. Boca Raton: CRC Press; 2018:27–36.

11. Thurman H.V. Introductory oceanography. New Jersey: Prentice Hall College; 1997. 544 pp.

12. Rolle I., Hobucher H.E., Kneifel H., Pascold B., Piepe W., Soeder C.J. Amines in unicellular green algae: 2. Amines in Scenedesmus acutas. Anal. Biochem. 1977;77(1):103–109.

13. Dale H.H. The action of certain esters and ethers of choline, and their relation to muscarine. J. Pharmacol. Exp. Ther. 1914;6 (2):147–190.

14. Loewi O. Über humorale Übertragbarkeit der Herznervenwirkung. Pflug Arch. Ges. Phys. 1922;193(1):201–213.

15. Loewi O., Navratil E. Über humorale Übertragbarkeit der Herznervenwirkung. Pflug Arch. Ges. Phys. 1926;214(1):678–688.

16. Zeisel S.H. A brief history of choline. Ann. Nutr. Metab. 2012;61(3):254–258.

17. Wall R., Cryan J.F., Ross R.P., Fitzgerald G.F., Dinan T.G., Stanton C. Bacterial neuroactive compounds produced by probiotics. Adv. Exp. Med. Biol. 2014;817:221–239.

18. Johnson K.V.A., Foster K.R. Why does the microbiome affect behavior? Nat. Rev. Microbiol. 2018;16(10):647–655.

19. Baig A. M., Rana Z., Tariq S., Lalani S., Ahmad H.R. Traced on the timeline: discovery of acetylcholine and the components of the human cholinergic system in a primitive unicellular eukaryote Acanthamoeba spp. ACS Chem. Neurosci. 2018;9(3):494–504.

20. Parker M.S., Mock T., Armbrust E.V. Genomic insights into marine microalgae. Annu. Rev. Genet. 2008;42:619–645.

21. Gupta V., Thakur R.S., Reddy C.R.K., Jha B. Central metabolic processes of marine macrophytic algae revealed from NMR-based metabolome analysis. RSC Adv. 2013;3(19):7037–7047.

22. Barwell C.J. Acetylcholine in the red alga Laurencia obtusa (Huds.). Lamour. Bot. Mar. 1980;23:63–64.

23. Dean B. Evolution of the human CNS cholineric system: has this resulted in the emergence of psychiatric disease? Aust. N. Z. J. Psychiatry. 2009;43(11):1016–1028.

24. Smallman B.N., Maneckjee A. The synthesis of acetylcholine by plants. Biochem. J. 1981;194(1):361–364.

25. Юрин В.М. Биомедиаторы в растениях: курс лекций. Мн.: БГУ; 2004. 128 с.

26. Schiechl G., Himmelsbach M., Buchberger W., Kerschbaum H. H., Lütz-Meindl U. Identification of acetylcholine and impact of cholinomimetic drugs on cell differentiation and growth in the unicellular green alga Micrasterias denticulate. Plant Sci. 2008;175(3):262–266.

27. Lütz-Meindl U. Micrasterias as a model system in plant cell biology. Front. Plant Sci. 2016;7(82):999.

28. Parsaiemehr A., Sun Z., Dou X., Chen Y.F. Simultaneous improvement in production of microalgal biodiesel and high-value alpha-linolenic acid by a single regulator acetylcholine. Biotechnol. Biofuels. 2015;8(1):11.

29. Czerpak R., Bajguz A., Jewiec P., MuszynskaGarstka M. The influence of acetylcholine and taurine on the content of some metabolites in the alga Chlorella vulgaris. Ecohydrol. Hydrobiol. 2003;3(2):223–229.

30. Sobotka T.J. Studies on acetylcholine levels in mouse brain. Ph. D. Dissertation. Chicago: Loyola University; 1969. 247 pp.

31. Van Alstyne K.L., Harvey E.L., Cataldo M. Effects of dopamine, a compound released by the greentide macroalga Ulvaria obscura (Chlorophyta), on marine algae and invertebrate larvae and juveniles. Phycologia. 2014;53(2):195–202.

32. Fillafer C., Schneider M.F. On the excitation of action potentials by protons and its potential implications for cholinergic transmission. Protoplasma. 2016;253(2):357–365.

33. Skulachev V.P. Membrane bioenergetics. Berlin, N.Y.: Springer-Verlag; 1988. 442 pp.

34. Roshchina V.V. Biomediators in plants. Acetylcholine and biogenic amines. Pushchino: Biology Center, USSR Academy of Sciences; 1991. 193 pp.

35. Рощина В.В. Нейротрансмиттеры – биомедиаторы и регуляторы растений. М.: Информика; 2010. 120 c.

36. Roshchina V.V., Yashin V.A., Podunai Y.A. Fluorescence in the study of diatom Ulnaria ulna cells. Austin Environ. Sci. 2022;7(3):1077.

37. Beilby M.J., Turi C.E., Baker T.C., Tymm F.J., Murch S.J. Circadian changes in endogenous concentrations of indole-3-acetic acid, melatonin, serotonin, abscisic acid and jasmonic acid in Characeae (Chara australis Brown). Plant Signal. Behav. 2015;10:1082697.

38. Oleskin A.V., Postnov A.L., Boyang C. Impact of biogenic amines on the growth of green microalgae. J. Pharm. Nutr. Sci. 2021;11:144–150.

39. Oleskin A.V., Postnov A.L., Boyang C. Impact of biogenic amines on the growth of a Chlorella vulgaris culture. J. Pharm. Nutr. Sci. 2021;11:P.49–53.

40. Oleskin A.V., Shenderov B.A. Microbial communication and microbiota-host interactions: biomedical, biotechnological, and biopolitical implications. Hauppauge (N.Y.): Nova Science Publishers; 2020. 371 pp.

41. Олескин А.В., Шендеров Б.А., Роговский В.С. Cоциальность микроорганизмов и взаимоотношения в системе микробиота-хозяин: роль нейромедиаторов. М.: Изд-во МГУ; 2020. 286 c.

42. Knecht L.D., O’Connor G.O., Mittal R., Liu X.Z., Daftarian P., Deo S.K., Daunert S. Serotonin activates bacterial quorum sensing and enhances the virulence of Pseudomonas aeruginosa in the host. EBioMedicine. 2016;9:161–169.

43. Oleskin A.V., Kirovskaya T.A., Botvinko I.V., Lysak L.V. Effect of serotonin (5-hydroxytryptamine) on microbial growth and differentiation. Microbiology (Mosc.). 1998;67(3):306–311.

44. Ramakrishna A., Mukherjee S. New insights on neurotransmitter signaling mechanisms in plants. Plant Signal. Behav. 2020;15(6):1737450.

45. Medina V.A., Rivera E.S. Histamine receptors and cancer pharmacology. Br. J. Pharmacol. 2010;161(4):755–767.

46. Kulma A., Szopa J. Catecholamines are active compounds in plants. Plant Science. 2007;172(3):433–440.

47. Clarke M.B., Hughes D.T., Zhu C., Boedeker E.C., Sperandio V. The QseC sensor kinase: A bacterial adrenergic receptor. Proc. Natl. Acad. Sci. U.S.A. 2006;103(27):10420–10425.

48. Bansal T., Englert D., Lee J., Hegde M., Wood T.K., Jayaraman A. Differential effects of epinephrine, norepinephrine, and indole on Escherichia coli O157:H7 chemotaxis, colonization, and gene expression. Infect. Immun. 2007;75(9):4597–4607.

49. Chapman R.L. Algae: the world’s most important “plants”—an introduction. Mitig. Adapt. Strateg. Glob. Change. 2013;15(6):5–12.

50. Boyang C., Oleskin A.V., Vlasova T. Detecting biogenic amines in food and drug plants with HPLC: medical and nutritional implications. J. Pharm. Nutr. Sci. 2020;10(3):88–91.

51. Fontaine R., Affaticati R., Yamamoto K., Jolly C., Bureau C., Baloche S., Gounet F., Vermir P., Dufour S., Pasqualini C. Dopamine inhibits reproduction in female zebrafish (Danio rerio) via three pituitary D2 receptor subtypes. Neuroendocrinology. 2013;154(2):807–818.

52. Иванова Е.Е., Луканова Н.Н. Содержание гистамина в рыбе и рыбных продуктах. Изв. вузов. Пищ. технол. 1998;5–6:18–19.

53. Wiltshire K.H., Lampert W. Urea excretion by Daphnia: A colony-inducing factor in Scenedesmus? Limnol. Oceanol. 1999;44(8):1894–1903.

54. Convention on Biological Diversity. Article 19 [Электронный ресурс]. 2011. URL: https://www.cbd.int/convention/text (дата обращения: 29.11.2022).

55. Chye J.T.T., Jub L.Y., Yon L.S., Pan S., Danquah M.K. Biofuel production from algal biomass. Bioenergy and Biofuels. Ed. O. Konur. Boca Raton: CRC Press/Taylor and Francis Group; 2018:87–117.

56. Camacho F., Macedo A., Malcata F. Potential industrial applications and commercialization of microalgae in the functional food and feed industries: a short review. Mar. Drugs. 2019;17(6):312.

57. Khavari F., Saidijam M., Taheri M., Nouri F. Microalgae: therapeutic potentials and applications. Mol. Biol. Rep. 2021;48(5): 4757–4765.

58. Balasubramaniam V., Gunasegavan R.D., Mustar S., Lee J.C., Mohd Noh M.F. Isolation of industrial important bioactive compounds from microalgae. Molecules. 2021;26(4):943.

59. Bello A.S., Saadoui I., Ben-Hamadou R. “Beyond the source of bioenergy:” microalgae in modern agriculture as a biostimulant, biofertilizer, and anti-abiotic stress. Agronomy. 2021;11(8):1610.

60. Roessler P.G., Bleibaum J.L., Thompson G.A., Ohlrogge J.B. Characteristics of the gene that encodes acetyl-CoA carboxylase in the diatom Cyclotella cryptica. Ann. N. Y. Acad. Sci. 1994;721:250–256.

61. Fabris M., Abbriano R.M., Pernice M., Sutherland D.L., Commault A.S., Hall C.C., Labeeuw L., McCauley J.I., Kuzhiuparambil U., Ray P., Kahlke T., Ralph P.J. Emerging technologies in algal biotechnology: toward the establishment of a sustainable, algae-based bioeconomy. Front. Plant Sci. 2020;11:279.

62. Oleskin A.V., Zhilenkova O.G., Shenderov B.A., Amerhanova A.M., Kudrin V.S., Klodt P.M. Lactic-acid bacteria supplement fermented dairy products with human behavior-modifying neuroactive compounds. J. Pharm. Nutr. Sci. 2014;4(3):199–206.

63. Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018;1693(Part B):128–133.

64. Lyte M. Microbial endocrinology: an ongoing personal journey. Microbial Endocrinology: Interkingdom Signaling in Infectious Disease and Health. Ed. M. Lyte. N.Y.: Springer; 2016:1–24.

65. Tsavkelova E.A., Botvinko I.V., Kudrin V.S., Oleskin A.V. Detecting neuromediator amines in microorganisms with high performance liquid chromatography. Dokl. Biochem. 2000;372(1–6):840–842.

66. Pokusaeva K., Johnson C., Luk B., Uribe G., Fu Y., Oezguen N., Matsunami R.K., Lugo M., Major A., Mori-Akiyama Y., Hollister E.B., Dann S.M., Shi X.Z., Engler D.A., Savidge T., Versalovic J. GABA-producing Bifidobacterium dentium modulates visceral sensitivity in the intestine. Neurogastroenterol. Motil. 2017;29(1):12904.

67. Sorrenti V., Castagna D.A., Fortinguera S., Burini A., Scapagnini G., Willcox D.C. Spirulina microalgae and brain health: a scoping review of experimental and clinical evidence. Mar. Drugs. 2021;19(6):293.

68. Hamed I., Özogul F., Özogul Y., Regenstein J.M. Marine bioactive compounds and their health benefits: a review. Compr. Rev. Food Sci. Food Saf. 2015;14(4):446–465.

69. Beheshtipour H., Mortazavian A.M., Haratian P., Khosravi-Darani K. Effects of Chlorella vulgaris and Arthrospira platensis addition on viability of probiotic bacteria in yogurt and its biochemical properties. Eur. Food Res. Technol. 2012;235:719–728.

70. Olasehinde T.A., Olaniran A.O., Okoh A.I. Therapeutic potentials of microalgae in the treatment of Alzheimer’s disease. Molecules. 2017;22(3):480.

71. Olasehinde O.A., Odjadjare E.C., Mabinya L.V., Olaniran A.O., Okoh A.I. Chlorella sorokiniana and Chlorella minutissima exhibit antioxidant potentials, inhibit cholinesterases and modulate disaggregation of β-amyloid fibrils. Electron. J. Biotechnol. 2019;40(16):1–9.

72. Sun Y., Wang H., Guo G., Pu Y., Yan B. The isolation and antioxidant activity of polysaccharides from the marine microalgae Isochrysis galbana. Carbohydr. Polym. 2014;113(4):22–31.

73. Wu Q., Zhang X.S., Wang H.D., Zhang X., Yu Q., Li W., Zhou M.L., Wang X.L. Astaxanthin activates nuclear factor erythroid-related factor 2 and the antioxidant responsive element (Nrf2-ARE) pathway in the brain after subarachnoid hemorrhage in rats and attenuates early brain injury. Mar. Drugs. 2014;12(12):6125–6141.

74. Safafar H., Wagenen J., Møller P., Jacobsen C. Carotenoids, phenolic compounds and tocopherols contribute to the antioxidative properties of some microalgae species grown on industrial wastewater. Mar. Drugs. 2015;13(12):7339–7356.

75. Miranda M.S., Cintra R.G., Barros S.B., Mancini F.J. Antioxidant activity of the microalga Spirulina maxima. Braz. J. Med. Biol. Res. 1998;31(8):1075–1079.

76. El-Baky H.H.A., El Baz F.K., El-Baroty G.S. Production of phenolic compounds from Spirulina maxima microalgae and its protective effects. Afr. J. Biotechnol. 2009;8(24):7059–7067.

77. Custódio L., Justo T. Silvestre L. Barradas A., Duarte C.C., Pereira H., Barreira L., Rauter A.P., Alberício F., Varela J. Microalgae of different phyla display antioxidant, metal chelating and acetylcholinesterase inhibitory activities. Food Chem. 2012;131(1):134–140.

78. Oboh G., Nwanna E.E., Oyeleye S.I., Olasehinde T.A., Ogunsuyi O.B., Boligon A.A. In vitro neuroprotective potentials of aqueous and methanol extracts from Heinsia crinita leaves. Food Sci. Hum. Wellness. 2016;5(2):95–102.

79. Oboh G., Ogunruku O.O., Oyeleye S.I., Olasehinde T.A., Ademosun A.O., Boligon A.A. Phenolic extracts from Clerodendrum volubile leaves inhibit cholinergic and monoaminergic enzymes relevant to the management of some neurodegenerative diseases. J. Dietary Suppl. 2016;14(3):358–371.

80. Masters R.D. Why study serotonin, social behavior and the law? The Neurotransmitter Revolution. Serotonin, Social Behavior and the Law. Eds. R.D. Masters and M.T. McGuire. Carbondale, Edwardsville: Southern Illinois University Press; 1994:3–16.

81. Sasaki K., Linh T.N., Hirano A., Tominaga K., Nukaga S., Nozaki H., Arimura T., Isoda H. Microalgae extract induces antidepressant-like activity via neuroinflammation regulation and enhances the neurotransmitter system. Food Chem. Toxicol. 2022;170(3):113508.

82. Molgó J., Marchot P., Aráoz R., Benoit E., Iorga B.I., Zakarian A., Taylor P., Bourne Y., Servent D. Cyclic imine toxins from dinoflagellates: a growing family of potent antagonists of the nicotinic acetylcholine receptors. J. Neurochem. 2017;142(Suppl. 2):41–51.

83. Landsberg J.H. The effects of harmful algal blooms on aquatic organisms. Rev. Fish. Sci. 2002;10(2):113–390.

84. Manning S.R, La Claire J.W. II. Prymnesins: toxic metabolites of the golden alga, Prymnesium parvum Carter (Haptophyta). Mar. Drugs. 2010;8(3):678–704.

85. Du X., Liu H., Yuan L., Wang Y., Ma Y., Wang R., Chen X., Losiewicz M.D., Guo H., Zhang H. The diversity of cyanobacterial toxins on structural characterization, distribution and identification: a systematic review. Toxins. 2019;11(9):530.

86. Aas P., Eriksen S., Kolderup J., Lundy P., Haugen J.E., Skulberg O.M., Fonnum F. Enhancement of acetylcholine release by homoanatoxin-a from Oscillatoria Formosa. ETAP. 1996;2(2–3):223–232.

87. Kearns K.D., Hunter M.D. Toxin-producing Anabaena flos-aquae induces settling of Chlamydomonas reinhardtii, a competing motile alga. Microb. Ecol. 2001;42(1):80–86.

88. Oleskin A.V., Shenderov B.A. Neuromodulatory effects and targets of the SCFAs and gasotransmitters produced by the human symbiotic microbiota. Microb. Ecol. Health Dis. 2016;27(1):30971–30982.


Рецензия

Для цитирования:


Олескин А.В., Боян Ц. Взаимодействие нейротрансмиттеров с микроводорослями: концептуальные и практические аспекты. Вестник Московского университета. Серия 16. Биология. 2023;78(3):146-159. https://doi.org/10.55959/MSU0137-0952-16-78-3-10

For citation:


Oleskin A.V., Boyang C. Impact of neurotransmitters on microalgae: conceptual and practical implications. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2023;78(3):146-159. (In Russ.) https://doi.org/10.55959/MSU0137-0952-16-78-3-10

Просмотров: 102


ISSN 0137-0952 (Print)