Evaluation of the primary reactions of photosynthesis in microalgae single cell by microfluorimetric method
https://doi.org/10.55959/MSU0137-0952-16-78-3-4
Abstract
High-resolution chlorophyll fluorescence light induction curves (OJIP transients) are widely used to assess the primary photosynthetic responses of phototrophic microorganisms. Chlorophyll fluorescence measuring methods coupled with microscopy techniques provide a promising opportunity to measure OJIP transients on individual algal cells, allowing scientists to investigate stress adaptation mechanisms related to reorganization of microalgae population or phytoplankton community. In this work, we first characterized the OJIP transients measured on individual algae cells using the original microfluorimeter and compared them with OJIP transients recorded in microalgae suspensions. Based on the results of the study, we proposed a method for analyzing OJIP curves of individual microalgae cells as well as ways to further improve microfluorimeters.
Keywords
About the Authors
А. А. VolgushevaRussian Federation
Department of Biophysics, Faculty of Biology
1–12 Leninskie gory, Moscow, 119234
I. V. Konyukhov
Russian Federation
Department of Biophysics, Faculty of Biology
1–12 Leninskie gory, Moscow, 119234
T. K. Antal
Russian Federation
Laboratory of Integrated Environmental Research
21 Sovetskaya st., Pskov, 180000
References
1. Bender M.L., Grande K.D., Johnson K.M., Marra J.F., Williams P.J., Sieburth J.M., Pilson M.E., Langdon C., Hitchcock G.L., Orchardo J., Hunt C.P., Donaghay P.L., Heinemann K. A comparison of four methods for determining planktonic community production 1. Limnol. Oceanogr. 1987;32(5):1085–1098.
2. Kelly C.A., Fee E., Ramlal P.S., Rudd J.W.M., Hesslein R.H., Anema C., and Schindler E.U. Natural variability of carbon dioxide and net epilimnetic production in the surface waters of boreal lakes of different sizes. Limnol. Oceanogr. 2001;46(5):1054–1064.
3. del Giorgio P.A., Williams P.J. Respiration in aquatic ecosystems: history and background. Respiration in Aquatic Ecosystems. Eds. P.A. del Giorgio and P.J. Williams. N.Y.: Oxford Univ. Press; 2023:1–17.
4. Маторин Д.Н., Горячев С.Н. Флуоресценция хлорофилла микроводорослей в биотестировании загрязнений. М.: Альтекс; 2017. 142 с.
5. Погосян С.И., Конюхов И.В., Рубин А.Б. Проблемы экологической биофизики. М. – Ижевск: АНО Ижевский институт компьютерных исследований; 2017. 270 с.
6. Schreiber U. Pulse-Amplitude-Modulation (PAM) fluorometry and saturation pulse method: An overview. Chlorophyll a fluorescence. A signature of photosynthesis. Advances in photosynthesis and respiration, vol. 19. Eds. G.C. Papageorgiou and Govindjee. Berlin.: Springer; 2004:279–319.
7. Papageorgiou G.C., Tsimilli-Michael M., Stamatakis K. The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria: a viewpoint. Photosynth. Res. 2007;94(2–3):275–290.
8. Stirbet A., Govindjee Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J–I–P rise. Photosynth. Res. 2012; 113(1–3):15–61.
9. Lazár D. The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. Funct. Plant Biol. 2006; 33(1):9–30.
10. Schansker G., Tóth S.Z., Kovács L., Holzwarth A.R., Garab G. Evidence for a fluorescence yield change driven by a light-induced conformational change within photosystem II during the fast chlorophyll a fluorescence rise. Biochim. Biophys. Acta. 2011;1807(9):1032–1043.
11. Vredenberg W.J., Bulychev A. Photoelectric effects on chlorophyll fluorescence of photosystem II in vivo. Kinetics in the absence and presence of valinomycin. Bioelectrochemistry. 2003;60(1–2):87–95.
12. Sipka G., Magyar M., Mezzetti A., Akhtar P., Zhu Q., Xiao Y., Han G., Santabarbara S., Shen J.-R., Lambrev P.H., Garab G. Light-adapted charge-separated state of photosystem II: Structural and functional dynamics of the closed reaction center. Plant Cell. 2021;33(4):1286–1302.
13. Murchie E.H., Lawson T. Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J Exp Bot. 2013;64(13):3983–98.
14. Kuznetsov A.G., Konyukhov I.V., Pogosyan S.I., Rubin A.B. Microfluorimeter for studying the state of photosynthetic apparatus of individual cells of microalgae. Oceanology. 2021;61(6):1055–1063.
15. Volgusheva A.A., Todorenko D.A., Konyukhov I.V., Voronova E.N., Pogosyan S.I., Plyusnina T.Y., Khruschev S.S., Antal T.K. Acclimation response of green microalgae Chlorella sorokiniana to 2,3’,4,4’,6-pentachlorobiphenyl. Photochem. Photobiol. 2022; 99(4):1106–1114.
16. Strasser R.J., Tsimilli-Michael M., Srivastava A. Analysis of the chlorophyll а fluorescence transient. Chlorophyll a fluorescence. A signature of photosynthesis. Advances in photosynthesis and respiration, vol. 19. Eds. G.C. Papageorgiou and Govindjee. Dordrecht.: Springer; 2004:321–362.
17. Rippka R., Deruelles J., Waterbury J., Herdman M., Stanier R. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 1979; 111(1):1–61.
18. Harris E.H. The Chlamydomonas sourcebook: A comprehensive guide to biology and laboratory use. San Diego: Academic Press; 1989. 780 pp.
19. Antal T.K., Osipov V., Matorin D.N., Rubin A.B. Membrane potential is involved in regulation of photosynthetic reactions in the marine diatom Thalassiosira weissflogii. J. Photochem. Photobiol. B. 2011;102(2):169–173.
20. Vanharanta M., Elovaara S., Franklin D.J., Spilling K., Tamelander T. Viability of picoand nanophytoplankton in the Baltic Sea during spring. Aquat. Ecol. 2020;54:119–135.
21. Swoczyna T., Kalaji H.M., Bussotti F., Mojski J., Pollastrini M. Environmental stress – what can we learn from chlorophyll a fluorescence analysis in woody plants? A review. Front. Plant Sci. 2022;13:1048582.
22. Kalaji H.M., Jajoo A., Oukarroum A., Brestic M., Zivcak M., Samborska I., Cetner M.D., I. Lukasik, Goltsev V. and Ladle R.J. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol Plant. 2016; 38(4):102.
23. Sasi S., Venkatesh J., Daneshi R.F., Gururani M.A. Photosystem II extrinsic proteins and their putative role in abiotic stress tolerance in higher plants. Plants. 2018;7(4):100.
24. Behrenfeld M.J., Milligan A.J. Photophysiological expressions of iron stress in phytoplankton. Ann. Rev. Mar. Sci. 2013;5:217–246.
25. Van de Waal D.B., Litchman E. Multiple global change stressor effects on phytoplankton nutrient acquisition in a future ocean. Philos. Trans R Soc. Lond. B Biol. Sci. 2020;375(1798):20190706.
26. Antal T.K., Krendeleva T.E., Tyystjärvi E. Multiple regulatory mechanisms in the chloroplast of green algae: relation to hydrogen production. Photosynth. Res. 2015;125(3):357–381.
27. Петрова Е.В., Кукарских Г.П., Кренделева Т., Антал, Т.К. О механизмах и роли фотосинтетического образования водорода у зеленых микроводорослей. Микробиол. 2020;89(3):259–275.
Review
For citations:
Volgusheva А.А., Konyukhov I.V., Antal T.K. Evaluation of the primary reactions of photosynthesis in microalgae single cell by microfluorimetric method. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2023;78(3):170-177. (In Russ.) https://doi.org/10.55959/MSU0137-0952-16-78-3-4