Preview

Вестник Московского университета. Серия 16. Биология

Расширенный поиск

Препараты с сенолитической активностью: перспективы и возможные ограничения

https://doi.org/10.55959/MSU0137-0952-16-78-4-3

Аннотация

Поиск и тестирование препаратов с сенолитической активностью являются одними из новых направлений в геронтологии. Увеличивающееся с возрастом количество «сенесцентных» клеток способствует развитию возрастных болезней и хронического неинфекционного воспаления. Удаление «сенесцентных» клеток или подавление их влияния на окружающие ткани кажется логичным шагом для улучшения качества жизни и, возможно, ее продления. Однако препараты, обладающие сенолитической и сеноморфической активностью в модельных системах, в клинических испытаниях вызывают развитие ряда побочных эффектов. В настоящем обзоре мы рассматриваем основные достижения в области сенотерапии, перспективы применения сенотерапевтических препаратов и ограничения, с которыми могут столкнуться исследователи и клиницисты.

Об авторах

Г. В. Моргунова
Московский государственный университет имени М.В. Ломоносова
Россия

Моргунова Галина Васильевна – канд. биол. наук, вед. науч. сотр. сектора эволюционной цитогеронтологии биологического факультета МГУ



А. Н. Хохлов
Московский государственный университет имени М.В. Ломоносова
Россия

Хохлов Александр Николаевич – докт. биол. наук, зав. сектором эволюционной цитогеронтологии биологического факультета МГУ



Список литературы

1. Zhu Y.I., Tchkonia T., Pirtskhalava T., Gower A.C., Ding H., Giorgadze N., Palmer A.K., Ikeno Y., Hubbard G.B., Lenburg M., O'Hara S.P. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell. 2015;14(4):644–658.

2. Childs B.G., Gluscevic M., Baker D.J., Laberge R.M., Marquess D., Dananberg J., Van Deursen J.M. Senescent cells: an emerging target for diseases of ageing. Nat. Rev. Drug Discov. 2017;16(10):718–735.

3. Niedernhofer L.J., Robbins P.D. Senotherapeutics for healthy ageing. Nat. Rev. Drug Discov. 2018;17(5):377.

4. Boccardi V., Mecocci P. Senotherapeutics: Targeting senescent cells for the main age-related diseases. Mech. Ageing Dev. 2021;197:111526.

5. Chaib S., Tchkonia T., Kirkland J.L. Cellular senescence and senolytics: the path to the clinic. Nat. Med. 2022;28(8):1556–1568.

6. Моргунова Г.В., Хохлов А.Н. Перспективы сенотерапевтических препаратов: далеко ли от исследований до клиники? Клин. геронтол. 2023;29(9–10):29–33.

7. Raffaele M., Vinciguerra M. The costs and benefits of senotherapeutics for human health. Lancet Healthy Longev. 2022;3(1):e67-77.

8. Livshits G., Kalinkovich A. Inflammaging as a common ground for the development and maintenance of sarcopenia, obesity, cardiomyopathy and dysbiosis. Ageing Res. Rev. 2019;56:100980.

9. Uyar B., Palmer D., Kowald A., Escobar H.M., Barrantes I., Möller S., Akalin A., Fuellen G. Single-cell analyses of aging, inflammation and senescence. Ageing Res. Rev. 2020;64:101156.

10. Santoro A., Bientinesi E., Monti D. Immunosenescence and inflammaging in the aging process: age-related diseases or longevity? Ageing Res. Rev. 2021;71:101422.

11. Thoppil H., Riabowol K. Senolytics: A translational bridge between cellular senescence and organismal aging. Front. Cell Dev. Biol. 2020;7:367.

12. Hayflick L., Moorhead P.S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 1961;25(3):585–621.

13. Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 1965;37(3):614–636.

14. Khokhlov A.N. Evolution of the term “cellular senescence” and its impact on the current cytogerontological research. Moscow Univ. Biol. Sci. Bull. 2013;68:158–161.

15. Neri F., Basisty N., Desprez P.Y., Campisi J., Schilling B. Quantitative proteomic analysis of the senescence associated secretory phenotype by data independent acquisition. Curr. Protoc. 2021;1(2):e32.

16. Paramos de Carvalho D., Jacinto A., Saúde L. The right time for senescence. eLife. 2021;10:e72449.

17. Khokhlov A.N., Klebanov A.A., Karmushakov A.F., Shilovsky G.A., Nasonov M.M., Morgunova G.V. Testing of geroprotectors in experiments on cell cultures: choosing the correct model system. Mosc. Univ. Biol. Sci. Bull. 2014;69(1):10–14.

18. Khokhlov A.N. Which aging in yeast is “true”? Moscow Univ. Biol. Sci. Bull. 2016;71(1):11–13.

19. Khokhlov A.N., Morgunova G.V., Klebanov A.A. Demographic approaches to the study of aging on cell cultures. Moscow Univ. Biol. Sci. Bull. 2019;74(4):262–267.

20. Ogrodnik M. Cellular aging beyond cellular senescence: Markers of senescence prior to cell cycle arrest in vitro and in vivo. Aging Cell. 2021;20(4):e13338.

21. Morgunova G.V., Khokhlov A.N. Signs of similarities and differences in cellular models of aging: A scoping review. Moscow Univ. Biol. Sci. Bull. 2022;77(3):139–146.

22. Song S., Tchkonia T., Jiang J., Kirkland J.L., Sun Y. Targeting senescent cells for a healthier aging: challenges and opportunities. Adv. Sci. 2020;7(23):2002611.

23. Xu M., Pirtskhalava T., Farr J.N., et al. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 2018;24(8):1246–1256.

24. Vicencio J.M., Galluzzi L., Tajeddine N., Ortiz C., Criollo A., Tasdemir E., Morselli E., Ben Younes A., Maiuri M.C., Lavandero S., Kroemer G. Senescence, apoptosis or autophagy? When a damaged cell must decide its path–a mini-review. Gerontology. 2008;54(2):92–99.

25. Campisi J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell. 2005;120(4):513–522.

26. Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C, Campisi J, Collado M, Evangelou K, Ferbeyre G, Gil J. Cellular senescence: defining a path forward. Cell. 2019;179(4):813–827.

27. Kirkland J.L., Tchkonia T. Cellular senescence: a translational perspective. EBioMedicine. 2017;21:21–28.

28. Ильющенко А.К., Мачехина Л.В., Ткачева О.Н., Балашова А.В., Мельницкая А.А., Чуров А.В., Стражеско И.Д. Сенолитические препараты: возможность применения в клинической практике. Проблемы геронауки. 2023;(1):7–14.

29. Power H., Valtchev P., Dehghani F., Schindeler A. Strategies for senolytic drug discovery. Aging Cell. 2023;22(10):e13948.

30. Wang Y., He Y., Rayman M.P., Zhang J. Prospective selective mechanism of emerging senolytic agents derived from flavonoids. J. Agric. Food Chem. 2021;69(42):12418–12423.

31. Zhang L., Pitcher L.E., Prahalad V., Niedernhofer L.J., Robbins P.D. Recent advances in the discovery of senolytics. Mech. Ageing Dev. 2021;200:111587.

32. Cai Y., Zhou H., Zhu Y., Sun Q., Ji Y., Xue A., Wang Y., Chen W., Yu X., Wang L., Chen H. Elimination of senescent cells by β-galactosidase-targeted prodrug attenuates inflammation and restores physical function in aged mice. Cell Res. 2020;30(7):574–589.

33. Suda M., Shimizu I., Katsuumi G., Yoshida Y., Hayashi Y., Ikegami R., Matsumoto N., Yoshida Y., Mikawa R., Katayama A., Wada J. Senolytic vaccination improves normal and pathological age-related phenotypes and increases lifespan in progeroid mice. Nat. Aging. 2021;1(12):1117–1126.

34. Poblocka M., Bassey A.L., Smith V.M., Falcicchio M., Manso A.S., Althubiti M., Sheng X., Kyle A., Barber R., Frigerio M., Macip S. Targeted clearance of senescent cells using an antibody-drug conjugate against a specific membrane marker. Sci. Rep. 2021;11(1):20358.

35. Dubrez L., Causse S., Borges Bonan N., Dumétier B., Garrido C. Heat-shock proteins: chaperoning DNA repair. Oncogene. 2020;39(3):516–529.

36. Kulikowski E., Rakai B.D., Wong N.C. Inhibitors of bromodomain and extra‐terminal proteins for treating multiple human diseases. Med. Res. Rev. 2021;41(1):223–245.

37. Dolgin E. Send in the senolytics. Nat. Biotechnol. 2020;38(12):1371–1378.

38. He Y., Li W., Lv D., Zhang X., Zhang X., Ortiz Y.T., Budamagunta V., Campisi J., Zheng G., Zhou D. Inhibition of USP7 activity selectively eliminates senescent cells in part via restoration of p53 activity. Aging Cell. 2020;19(3):e13117.

39. Olascoaga Del Angel K.S., Gutierrez H., Königsberg M., Pérez Villanueva J., López Diazguerrero N.E. Exploring the fuzzy border between senolytics and senomorphics with chemoinformatics and systems pharmacology. Biogerontology. 2022;23(4):453–471.

40. Kowald A., Kirkwood T.B. Senolytics and the compression of late-life mortality. Exp. Gerontol. 2021;155:111588.

41. Gille B., Muller-Eigner A., Gottschalk S., Wytrwat E., Langhammer M., Peleg S. Longevity interventions in Titan mice attenuate frailty and senescence accumulation. bioRxiv. 2023:2023–2009.

42. Xu Q., Fu Q., Li Z., Liu H., Wang Y., Lin X., He R., Zhang X., Ju Z., Campisi J., Kirkland J.L. The flavonoid procyanidin C1 has senotherapeutic activity and increases lifespan in mice. Nat. Metab. 2021;3(12):1706–1726.

43. Novais E.J., Tran V.A., Johnston S.N., Darris K.R., Roupas A.J., Sessions G.A., Shapiro I.M., Diekman B.O., Risbud M.V. Long-term treatment with senolytic drugs Dasatinib and Quercetin ameliorates age-dependent intervertebral disc degeneration in mice. Nat. Commun. 2021;12(1):5213.

44. Ogrodnik M., Miwa S., Tchkonia T., Tiniakos D., Wilson C.L., Lahat A., Day C.P., Burt A., Palmer A., Anstee Q.M., Grellscheid S.N. Cellular senescence drives age-dependent hepatic steatosis. Nat. Commun. 2017;8(1):15691.

45. Zhang P., Kishimoto Y., Grammatikakis I., Gottimukkala K., Cutler R.G., Zhang S., Abdelmohsen K., Bohr V.A., Misra Sen J., Gorospe M., Mattson M.P. Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model. Nat. Neurosci. 2019;22(5):719– 728.

46. Farr J.N., Xu M., Weivoda M.M., Monroe D.G., Fraser D.G., Onken J.L., Negley B.A., Sfeir J.G., Ogrodnik M.B., Hachfeld C.M., LeBrasseur N.K. Targeting cellular senescence prevents age-related bone loss in mice. Nat. Med. 2017;23(9):1072–1079.

47. Fuhrmann-Stroissnigg H., Ling Y.Y., Zhao J., McGowan S.J., Zhu Y.I., Brooks R.W., Grassi D., Gregg S.Q., Stripay J.L., Dorronsoro A., Corbo L. Identification of HSP90 inhibitors as a novel class of senolytics. Nat. Commun. 2017;8(1):422.

48. Lagoumtzi S.M., Chondrogianni N. Senolytics and senomorphics: Natural and synthetic therapeutics in the treatment of aging and chronic diseases. Free Radic. Biol. Med. 2021;171:169–190.

49. Childs B.G., Baker D.J., Wijshake T., Conover C.A., Campisi J., Van Deursen J.M. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science. 2016;354(6311):472–477.

50. Yang H., Chen C., Chen H., Duan X., Li J., Zhou Y., Zeng W., Yang L. Navitoclax (ABT263) reduces inflammation and promotes chondrogenic phenotype by clearing senescent osteoarthritic chondrocytes in osteoarthritis. Aging (Albany N.Y.). 2020;12(13):12750.

51. Raffaele M., Kovacovicova K., Frohlich J., Lo Re O., Giallongo S., Oben J.A., Faldyna M., Leva L., Giannone A.G., Cabibi D., Vinciguerra M. Mild exacerbation of obesity-and age-dependent liver disease progression by senolytic cocktail dasatinib+ quercetin. Cell Commun. Signal. 2021;19:44.

52. Sharma A.K., Roberts R.L., Benson Jr. R.D., Pierce J.L., Yu K., Hamrick M.W., McGee-Lawrence M.E. The senolytic drug navitoclax (ABT-263) causes trabecular bone loss and impaired osteoprogenitor function in aged mice. Front. Cell Dev. Biol. 2020;8:354.

53. Morgunova G.V., Shilovsky G.A., Khokhlov A.N. Effect of caloric restriction on aging: Fixing the problems of nutrient sensing in postmitotic cells? Biochemistry (Mosc.). 2021;86(10):1352–1367.

54. Vandervoort A.A. Aging of the human neuromuscular system. Muscle Nerve. 2002:25(1):17–25.

55. Morterá P., and Herculano-Houzel S. Age-related neuronal loss in the rat brain starts at the end of adolescence. Front. Neuroanat. 2012;6:45.

56. Frontera W.R., Ochala J. Skeletal muscle: a brief review of structure and function. Calcif. Tissue Int. 2015;96(3):183–195.

57. Iakova P., Awad S.S., Timchenko N.A. Aging reduces proliferative capacities of liver by switching pathways of C/EBPα growth arrest. Cell. 2003;113(4):495–506.

58. Stolzing A., Scutt A. Age‐related impairment of mesenchymal progenitor cell function. Aging Cell. 2006;5(3):213–224.

59. Baiocchi L., Glaser S., Francis H., Kennedy L., Felli E., Alpini G., Gracia‐Sancho J. Impact of aging on liver cells and liver disease: focus on the biliary and vascular compartments. Hepatol. Commun. 2021;5(7):1125–1137.

60. von Zglinicki T., Wan T., Miwa S. Senescence in post-mitotic cells: a driver of aging? Antioxid. Redox Signal. 2021;34(4):308–323.

61. Hall B.M., Balan V., Gleiberman A.S., Strom E., Krasnov P., Virtuoso L.P., Rydkina E., Vujcic S., Balan K., Gitlin I.I., Leonova K.I. p16(Ink4a) and senescence-associated β-galactosidase can be induced in macrophages as part of a reversible response to physiological stimuli. Aging (Albany N.Y.). 2017;9(8):1867.

62. Deryabin P.I., Borodkina A.V. Stromal cell senescence contributes to impaired endometrial decidualization and defective interaction with trophoblast cells. Hum. Reprod. 2022;37(7):1505–1524.

63. Gems D., Kern C.C. Is “cellular senescence” a misnomer? Geroscience. 2022;44(5):2461–2469.


Рецензия

Для цитирования:


Моргунова Г.В., Хохлов А.Н. Препараты с сенолитической активностью: перспективы и возможные ограничения. Вестник Московского университета. Серия 16. Биология. 2023;78(4):278-284. https://doi.org/10.55959/MSU0137-0952-16-78-4-3

For citation:


Morgunova G.V., Khokhlov A.N. Drugs with senolytic activity: prospects and possible limitations. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2023;78(4):278-284. (In Russ.) https://doi.org/10.55959/MSU0137-0952-16-78-4-3

Просмотров: 345


ISSN 0137-0952 (Print)