Peculiarities of neutrophil extracellular traps formation in chinchilla rabbits
https://doi.org/10.55959/MSU0137-0952-16-79-1-7
Abstract
Neutrophil extracellular traps (NETs) are decondensed nuclear chromatin, decorated with bactericidal proteins of various cell organelles and performing an effector function aimed to combat pathogens at the site of inflammation. At the same time, NETs play an important role in the pathogenesis of many autoimmune and inflammatory diseases as well as malignancies. Rabbits are one of the most commonly used species of laboratory animals in medical and biological research. A large number of models of various diseases of the cardiovascular, immune and other human systems have been developed in rabbits. However, there is no information in the scientific literature about the ability of rabbit neutrophils to undergo NETosis in response to well-known pharmacological stimuli. The purpose of the present work was to study in in vitro system the ability of neutrophils of Soviet chinchilla rabbit to form NETs in response to mimetic of diacylglycerol phorbol 12-myristate 13-acetate (PMA) and calcium ionophore A23187. To isolate rabbit neutrophils, the one-step density gradient centrifugation on Ficoll-Hypaque method with modifications was used. Oxidative burst was assessed with luminol-amplified chemiluminescence method, and NET formation was assessed with immunofluorescence analysis. The work shows for the first time that neutrophils of Soviet chinchilla rabbit do not form NETs in response to PMA, but form traps in response to A23187, as well as have a low level of oxidative burst in response to PMA, A23187 and chemoattractant N-formyl-methionylleucyl- phenylalanine.
Keywords
About the Authors
N. V. VorobjevaRussian Federation
M. S. Muntyan
Russian Federation
References
1. Brinkmann V., Reichard U., Goosmann C., Fauler B., Uhlemann Y., Weiss D.S., Weinrauch Y., Zychlinsky A. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–1535.
2. Urban C.F., Ermert D., Schmid M., Abu-Abed U., Goosmann C., Nacken W., Brinkmann V., Jungblut P.R., Zychlinsky A. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog. 2009;5(10):e1000639.
3. Vorobjeva N.V., Chelombitko M.A., Sud’ina G.F., Zinovkin R.A., Chernyak B.V. Role of mitochondria in the regulation of effector functions of granulocytes. Cells. 2023;12(18):2210.
4. Neumann A., Brogden G., von Köckritz-Blickwede M. Extracellular traps: an ancient weapon of multiple kingdoms. Biology (Basel). 2020;9(2):34.
5. Zhang X., Zhuchenko O., Kuspa A., Soldati T. Social amoebae trap and kill bacteria by casting DNA nets. Nat. Commun. 2016;7:10938.
6. Hawes M., Allen C., Turgeon B.G., Curlango- Rivera G., Minh Tran T., Huskey D.A., Xiong Z. Root border cells and their role in plant defense. Annu. Rev. Phytopathol. 2016;54:143–161.
7. Vorobjeva N.V., Pinegin B.V. Neutrophil extracellular traps: mechanisms of formation and role in health and disease. Biochemistry (Mosc.). 2014;79(12):1286–1296.
8. Pinegin B., Vorobjeva N., Pinegin V. Neutrophil extracellular traps and their role in the development of chronic inflammation and autoimmunity. Autoimmun. Rev. 2015;14(7):633–640.
9. Vorobjeva N.V., Chernyak B.V. NETosis: molecular mechanisms, role in physiology and pathology. Biochemistry (Mosc.). 2020;85(10):1178–1190.
10. Vorobjeva N.V. Neutrophil extracellular traps: new aspects. Moscow Univ. Biol. Sci. Bull. 2020;75(4):173–188.
11. Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 2018;18(2):134–147.
12. Cools-Lartigue J., Spicer J., Najmeh S., Ferri L. Neutrophil extracellular traps in cancer progression. Cell. Mol. Life Sci. 2014;71(21):4179–4194.
13. Baksheeva V.E., Tiulina V.V., Iomdina E.N., et al. Tear nanoDSF denaturation profile is predictive of glaucoma. Int. J. Mol. Sci. 2023;24(8):7132.
14. Chistyakov D.V., Gancharova O.S., Baksheeva V.E., Tiulina V.V., Goriainov S.V., Azbukina N.V., Tsarkova M.S., Zamyatnin A.A., Jr., Philippov P.P., Sergeeva M.G., Senin I.I., Zernii E.Y. Inflammation in dry eye syndrome: identification and targeting of oxylipin-mediated mechanisms. Biomedicines. 2020;8(9):344.
15. Livingston E.T., Mursalin M.H., Callegan M.C. A Pyrrhic victory: the PMN response to ocular bacterial infections. Microorganisms. 2019;7(11):537.
16. Pulavendran S., Prasanthi M., Ramachandran A., Grant R., Snider T.A., Chow V.T.K., Malayer J.R., Teluguakula N. Production of neutrophil extracellular traps contributes to the pathogenesis of Francisella tularemia. Front. Immunol. 2020;11:679.
17. Vorobjeva N., Dagil Y., Pashenkov M., Pinegin B., Chernyak B. Protein kinase C isoforms mediate the formation of neutrophil extracellular traps. Int. Immunopharmacol. 2023;114:109448.
18. Kouoh F., Gressier B., Luyckx M., Brunet C., Dine T., Ballester L., Cazin M., Cazin J.C. A simple method for isolating human and rabbit polymorphonuclear neutrophils (PMNs). Biol. Pharm. Bull. 2000;23(11):1382–1383.
19. Vorobjeva N., Galkin I., Pletjushkina O., Golyshev S., Zinovkin R., Prikhodko A., Pinegin V., Kondratenko I., Pinegin B., Chernyak B. Mitochondrial permeability transition pore is involved in oxidative burst and NETosis of human neutrophils. Biochim. Biophys. Acta Mol. Basis Dis. 2020;1866(5):165664.
Review
For citations:
Vorobjeva N.V., Muntyan M.S. Peculiarities of neutrophil extracellular traps formation in chinchilla rabbits. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2024;79(1):66-71. (In Russ.) https://doi.org/10.55959/MSU0137-0952-16-79-1-7