Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

Multiple sclerosis. Some features of pathology and prospects for therapy. Part 1

https://doi.org/10.55959/MSU0137-0952-16-79-2-2

Abstract

Multiple sclerosis (MS) is among the most common diseases of the central nervous system. The disease leads to pathological demyelination of axons in the white matter of the brain, followed by demyelination of gray matter, and is accompanied by progressive neurodegeneration in patients. The etiology of the disease is not fully understood. However, a number of external and internal factors that increase the likelihood of MS among the active capable part of the population have been established. The characteristics of age patients exacerbating the course of MS have been identified. The review discusses the mechanism of inflammation activation at MS involving NLRP3 inflammasome and neutrophils identified in recent years, the effect of inflammation on damage to the blood-brain barrier and MS progression, as well as reactive oxygen species-mediated participation of mitochondria in MS pathology development.

About the Authors

E. K. Fetisova
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University
Russian Federation

1–40 Leninskie Gory, Moscow, 1119991



N. V. Vorobjeva
Lomonosov Moscow State University
Russian Federation

Biology Faculty, 

1–12 Leninskie Gory, Moscow, 119234



M. S. Muntyan
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University
Russian Federation

1–40 Leninskie Gory, Moscow, 1119991



References

1. Walton C., King R., Rechtman L., Kaye W., Leray E., Marrie R. A., Robertson N, La Rocca N., Uitdehaag B., van der Mei I., Wallin M., Helme A., Angood Napier C., Rijke N., Baneke P. Rising prevalence of multiple sclerosis worldwide: insights from the atlas of MS. Mult. Scler. J. 2020;26(14):1816–1821.

2. Dobson R., Giovannoni G. Multiple sclerosis – a review. Eur. J. Neurol. 2019;26(1):27–40.

3. Axthelm M.K., Bourdette D.N., Marracci G.H., Su W., Mullaney E.T., Manoharan M., Kohama S.G., Pollaro J., Witkowski E., Wang P., Rooney W.D., Sherman L.S., Wong S.W. Japanese macaque encephalomyelitis: a spontaneous multiple sclerosis-like disease in a nonhuman primate. Ann. Neurol. 2011;70(3):362–373.

4. Hedström A.K., Hössjer O., Katsoulis M., Kockum I., Olsson T., Alfredsson L. Organic solvents and MS susceptibility. Interaction with MS risk HLA genes. Neurology. 2018;91(5):e455–e462.

5. Баринский И.Ф., Гребенникова Т.В., Альховский С.В., Кочергин-Никитский К.С., Сергеев О.В., Грибенча С.В., Раев С.А. Молекулярно-генетическая характеристика вируса, выделенного от больных острым энцефаломиелитом человека и множественным склерозом. Вопросы вирусологии. 2015;60(4):14–18.

6. Buljevac D., Flach H.Z., Hop W.C., Hijdra D., Laman J.D., Savelkoul H.F., van Der Meche F.G., van Doorn P.A., Hintzen R.Q. Prospective study on the relationship between infections and multiple sclerosis exacerbations. Brain. 2002;125(Pt. 5):952–960.

7. Kriesel J.D., White A., Hayden F.G., Spruance S.L., Petajan J. Multiple sclerosis attacks are associated with picornavirus infections. Mult. Scler. 2004;10(2):145–148.

8. Cossu D., Yokoyama K., Hattori N. Bacteria-host interactions in multiple sclerosis. Front. Microbiol. 2018;9:2966.

9. Bjornevik K., Cortese M., Healy, B.C., Kuhle J., Mina M.J., Leng Y., Elledge S.J., Niebuhr D.W., Scher A.I., Munger K.L., Ascherio A. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science. 2022;375(6578):296–301.

10. Handel A.E., Handunnetthi L., Ebers G.C. Ramagopalan S.V. Type 1 diabetes mellitus and multiple sclerosis: common etiological features. Nat. Rev. Endocrinol. 2009;5(12):655–664.

11. Nielsen N.M., Westergaard T., Frisch M., Rostgaard K., Wohlfahrt J., Koch-Henriksen N., Melbye M., Hjalgrim H. Type 1 diabetes and multiple sclerosis: A Danish population-based cohort study. Arch. Neurol. 2006;63(7):1001–1004.

12. Bechtold S., Blaschek A., Raile K., Dost A., Freiberg C., Askenas M., Fröhlich-Reiterer E., Molz E., Holl R.W. Higher relative risk for multiple sclerosis in a pediatric and adolescent diabetic population: analysis from DPV database. Diabetes Care. 2014;37(1):96–101.

13. Magyari M., Sorensen P.S. Comorbidity in multiple sclerosis. Front. Neurol. 2020;11:851.

14. Лапштаева А.В., Абросимова Ю.Г., Еремкина Т.Я., Костина Ю.A. Микробные агенты как триггеры развития рассеянного склероза. Инфекция и иммунитет. 2021;11(6):1050–1056.

15. Conway S.E., Healy B.C., Zurawski J., Severson C., Kaplan T., Stazzone L., Galetta K., Chitnis T., Houtchens M.K. COVID-19 severity is associated with worsened neurological outcomes in multiple sclerosis and related disorders. Mult. Scler. Relat. Dis. 2022;63:103946.

16. Najjar S., Najjar A., Chong D.J., Pramanik B.K., Kirsch C., Kuzniecky R.I., Pacia S.V., Azhar S. Central nervous system complications associated with SARS-CoV-2 infection: integrative concepts of pathophysiology and case reports. J. Neuroinflamm. 2020;17(1):231.

17. Sormani M.P., Schiavetti I., Carmisciano L. et al. COVID-19 severity in multiple sclerosis: putting data into context. Neurol. Neuroimmunol. Neuroinflamm. 2021;9(1):e1105.

18. Michelena G., Casas M., Eizaguirre M.B., Pita M.C., Cohen L., Alonso R., Garcea O., Silva B.A. ¿ Can COVID-19 exacerbate multiple sclerosis symptoms? A case series analysis. Mult. Scler. Relat. Dis. 2022;57:103368.

19. Lima M., Aloizou A.M., Siokas V., Bakirtzis C., Liampas I., Tsouris Z., Bogdanos D.P., Baloyannis S.J. Dardiotis E. Coronaviruses and their relationship with multiple sclerosis: is the prevalence of multiple sclerosis going to increase after the Covid-19 pandemia? Rev. Neurosci. 2022;33(7):703–720.

20. Ximeno-Rodríguez I., Blanco-delRío I., Astigarraga E., Barreda-Gómez G. Acquired immune deficiency syndrome correlation with SARS-CoV-2 N genotypes. Biomed. J. 2023;100650. https://doi.org/10.1016/j.bj.2023.100650.

21. Bauer L., Laksono B.M., de Vrij F.M.S., Kushner S.A., Harschnitz O., van Riel D. The neuroinvasiveness, neurotropism, and neurovirulence of SARS-CoV-2. Trends Neurosci. 2022;45(5):358–368.

22. Stoiloudis P., Kesidou E., Bakirtzis C., Sintila S-A., Konstantinidou N., Boziki M., Grigoriadis N. The role of diet and interventions on multiple sclerosis: a review. Nutrients. 2022; 14(6):1150.

23. Tarlinton R.E., Khaibullin T., Granatov E., Martynova E., Rizvanov A., Khaiboullina S. The interaction between viral and environmental risk factors in the pathogenesis of multiple sclerosis. Int. J. Mol. Sci. 2019;20(2):303.

24. Fazia T., Baldrighi G.N., Nova A., Bernardinelli L. A systematic review of Mendelian randomization studies on multiple sclerosis. Eur. J. Neurosci., 2023;58(4):3172–3194.

25. Dhaiban S., Al-Ani M., Elemam N.M., AlAawad M.H., Al-Rawi Z., Maghazachi A.A. Role of peripheral immune cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Science. 2021;3(1):12.

26. Theodosis-Nobelos P., Rekka E.A. Efforts towards repurposing of antioxidant drugs and active compounds for multiple sclerosis control. Neurochem. Res. 2023;48(3):725–744.

27. Nozari E., Ghavamzadeh S., Razazian N. The effect of vitamin B12 and folic acid supplementation on serum homocysteine, anemia status and quality of life of patients with multiple sclerosis. Clin. Nutr. Res. 2019;8(1):36–45.

28. Magyari M., Koch-Henriksen N. Quantitative effect of sex on disease activity and disability accumulation in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry. 2022;93(7):716–722.

29. Salpietro V., Polizzi A., Recca G., Ruggieri M. The role of puberty and adolescence in the pathobiology of pediatric multiple sclerosis. Mult. Scler. Demyelinating Disord. 2018;3:2.

30. Ostolaza A., Corroza J., Ayuso T. Multiple sclerosis and aging): comorbidity and treatment challenges. Mult. Scler. Relat. Disord. 2021;50:102815.

31. Zhang Y., Atkinson J., Burd C.E., Graves J., Segal B.M. Biological aging in multiple sclerosis. Mult. Scler. 2023;29(14):1701–1708.

32. Lotti C.B.D.C., Oliveira A.S.B., Bichuetti D.B., Castro I.D., Oliveira E.M.L. Late onset multiple sclerosis: concerns in aging patients. Arq. Neuropsiquiatr. 2017;75(7):451–456.

33. Noseworthy J., Paty D., Wonnacott T., Feasby T., Ebers G. Multiple sclerosis after age 50. Neurology. 1983;33(12):1537–1537.

34. Zeydan B., Kantarci O.H. Impact of age on multiple sclerosis disease activity and progression. Curr. Neurol. Neurosci. Rep. 2020;20(7):24.

35. Marrie R.A., Cohen J., Stuve O., Trojano M., Sørensen P.S., Reingold S., Cutter G., Reider N. A systematic review of the incidence and prevalence of comorbidity in multiple sclerosis: overview. Mult. Scler. 2015;21(3):263–281.

36. Branco M., Ruano L., Portaccio E., Goretti B., Niccolai C., Patti F., Chisari C., Gallo P., Grossi P., Ghezzi A., Roscio M., Mattioli F., Bellomi F., Simone M., Gemma R., Amato M.P. Aging with multiple sclerosis: prevalence and profile of cognitive impairment. Neurol. Sci. 2019;40(8):1651–1657.

37. Jakimovski D., Weinstock-Guttman B., Roy S., Jaworski III M., Hancock L., Nizinski A., Srinivasan P., Fuchs T.A., Szigeti K., Zivadinov R., Benedict R.H. Cognitive profiles of aging in multiple sclerosis. Front. Aging Neurosci. 2019;11:105.

38. Boyko A., Melnikov M. Prevalence and incidence of multiple sclerosis in Russian Federation: 30 years of studies. Brain Sci. 2020;10(5):305.

39. Fetisova E., Chernyak B., Korshunova G., Muntyan M., Skulachev V. Mitochondria-targeted antioxidants as a prospective therapeutic strategy for multiple sclerosis. Curr. Med. Chem. 2017;24(19):2086–2114.

40. Морозов С.П., Владзимирский А.В., Черняева Г.Н., Бажин А.В., Пимкин А.А., Беляев М.Г., Кляшторный В.Г., Горшкова Т.Н., Курочкина Н.С., Якушева С.Ф. Валидация диагностической точности алгоритма «искусственного интеллекта» для выявления рассеянного склероза в условиях городской поликлиники. Лучевая диагностика и терапия. 2020;11(2):58–65.

41. Kiselev I., Bashinskaya V., Baulina N., Kozin M., Popova E., Boyko A., Favorova O., Kulakova O. Genetic differences between primary progressive and relapsingremitting multiple sclerosis: the impact of immune-related genes variability. Mult. Scler. Relat. Dis. 2019;29:130–136.

42. Kiselev I.S., Kulakova O.G., Baulina N.M., Bashinskaya V.V., Popova E.V., Boyko A.N., Favorova O.O. Variability of the MIR196A2 gene as a risk factor in primary-progressive multiple sclerosis development. Mol. Biol. 2019;53(2):249–255.

43. International Multiple Sclerosis Genetics Consortium. A systems biology approach uncovers cell-specific gene regulatory effects of genetic associations in multiple sclerosis. Nat. Commun. 2019;10:2236.

44. Patsopoulos N.A. Genetics of multiple sclerosis: an overview and new directions. Cold Spring Harb. Perspect. Med. 2018;8(7):a028951.

45. Ransohoff R.M., Hafler D.A., Lucchinetti C.F. Multiple sclerosis – a quiet revolution. Nat. Rev. Neurol. 2015;11(3):134–142.

46. Pytel V., Matías-Guiu J.A., Torre-Fuentes L., Montero P., Gómez-Graña Á., García-Ramos R., Moreno-Ramos T., Oreja-Guevara C., Fernández-Arquero M., Gómez-Pinedo U., Matías-Guiu J. Familial multiple sclerosis and association with other autoimmune diseases. Brain Behav. 2017;8(1):e00899.

47. Lublin F.D., Reingold S.C., Cohen J.A., Cutter G.R., Sørensen P.S., Thompson A.J., Wolinsky J.S., Balcer L.J., Banwell B., Barkhof F., Bebo B. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology. 2014;83(3):278–286.

48. Govindhan E., Pavithra J., Yuvaraj K., Muralidharan P. A comprehensive review on multiple sclerosis: it’s etiology, symptoms, epidemiology and current therapeutic approaches. Int. J. Sci. Res. Arch. 2023;8(2):462–474.

49. Hendriks J.J., Teunissen C.E., de Vries H.E., Dijkstra C.D. Macrophages and neurodegeneration. Brain Res. Rev. 2005;48(2):185–195.

50. Zheng C., Chen J., Chu F., Zhu J., Jin T. Inflammatory role of TLR-MyD88 signaling in multiple sclerosis. Front. Mol. Neurosci. 2020;12:314.

51. Van Horssen J., Witte M.E., Schreibelt G., de Vries H.E. Radical changes in multiple sclerosis pathogenesis. BBA-Mol. Basis Dis. 2011;1812(2):141–150.

52. Friese M.A., Schattling B., Fugger L. Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis. Nat. Rev. Neurol. 2014;10(4):225–238.

53. Scalfari A., Neuhaus A., Daumer M., Muraro P.A., Ebers G.C. Onset of secondary progressive phase and longterm evolution of multiple sclerosis. J. Neurol. Neurosurg. Psychiatry. 2014;85(1):67–75.

54. Goodin D.S. The epidemiology of multiple sclerosis: insights to a causal cascade. Handbook of clinical neurology. Eds. M.J. Aminoff, F. Boller, and D.F. Swaab. Elsevier; 2016;138:173–206.

55. Dong Y., Yong V.W. When encephalitogenic T cells collaborate with microglia in multiple sclerosis. Nat. Rev. Neurol. 2019;15(12):704–717.

56. Guerrero B.L., Sicotte N.L. Microglia in multiple sclerosis: friend or foe? Front. Immunol. 2020;11:374.

57. Inoue M., Shinohara M.L. NLRP3 Inflammasome and MS/EAE. Autoimmune Dis. 2013;2013:859145.

58. Shao S., Chen C., Shi G., Zhou Y., Wei Y., Fan N., Yang Y., Wu L., Zhang T. Therapeutic potential of the target on NLRP3 inflammasome in multiple sclerosis. Pharmacol. Therapeut. 2021;227:107880.

59. Bulua A.C., Simon A., Maddipati R., Pelletier M., Park H., Kim K.Y., Sack M.N., Kastner D.L., Siegel R.M. Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1- associated periodic syndrome (TRAPS). J. Exp. Med. 2011;208(3):519–533.

60. Gris D., Ye Z., Iocca H.A., Wen H., Craven R.R., Gris P., Huang M., Schneider M., Miller S.D., Ting J.P. NLRP3 plays a critical role in the development of experimental autoimmune encephalomyelitis by mediating Th1 and Th17 responses. J. Immunol. 2010;185(2):974–981.

61. Abais J.M., Xia M., Zhang Y., Boini K.M., Li P.L. Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxid. Redox Sign. 2015;22(13):1111–1129.

62. Chen Y., Ye X., Escames G., Lei W., Zhang X., Li M., Jing T., Yao Y., Qiu Z., Wang Z., Acuña-Castroviejo D., Yang Y. The NLRP3 inflammasome: contributions to inflammation-related diseases. Cell Mol. Biol. Lett. 2023;28(1):51.

63. Wolburg H., Neuhaus J., Kniesel U., Krauß B., Schmid E.M., Ocalan M., Farrell C., Risau W. Modulation of tight junction structure in blood-brain barrier endothelial cells. Effects of tissue culture, second messengers and cocultured astrocytes. J. Cell Sci. 1994;107(5):1347–1357.

64. Owens T., Bechmann I., Engelhardt B. Perivascular spaces and the two steps to neuroinflammation. J. Neuropath. Exp. Neur. 2008;67(12):1113–1121.

65. Ortiz G.G., Pacheco-Moisés F.P., Macías-Islas M.Á., Flores-Alvarado L.J., Mireles-Ramírez M.A., González-Renovato E.D., Hernández-Navarro V.E., Sánchez-López A.L., Alatorre-Jiménez M.A. Role of the blood-brain barrier in multiple sclerosis. Arch. Med. Res. 2014;45(8):687–697.

66. Zinovkin R.A., Romaschenko V.P., Galkin I.I., Zakharova V.V., Pletjushkina O.Y., Chernyak B.V., Popova E.N. Role of mitochondrial reactive oxygen species in age-related inflammatory activation of endothelium. Aging (Albany N.Y.). 2014;6(8):661.

67. Zakharova V.V., Pletjushkina O.Y., Galkin I.I., Zinovkin R.A., Chernyak B.V., Krysko D.V., Skulachev V.P., Popova E.N. Low concentration of uncouplers of oxidative phosphorylation decreases the TNF-induced endothelial permeability and lethality in mice. BBA-Mol. Basis Dis. 2017;1863(4):968–977.

68. Sanabria-Castro A., Alape-Girón A., FloresDíaz M., Echeverri-McCandless A., Parajeles-Vindas A. Oxidative stress involvement in the molecular pathogenesis and progression of multiple sclerosis: a literature review. Rev. Neurosci. 2024;35(3):355–371.

69. Calkins M.J., Johnson D.A., Townsend J.A., Vargas M.R., Dowell J.A., Williamson T.P., Kraft A.D., Lee J.M., Li J., Johnson J.A. The Nrf2/ARE pathway as a potential therapeutic target in neurodegenerative disease. Antioxid. Redox Sign. 2009;11(3):497–508.

70. Kharel P., McDonough J., Basu S. Evidence of extensive RNA oxidation in normal appearing cortex of multiple sclerosis brain. Neurochem. Int. 2016;92:43–48.

71. Tully M., Shi R. New insights in the pathogenesis of multiple sclerosis – role of acrolein in neuronal and myelin damage. Int. J. Mol. Sci. 2013;14(10):20037–20047.

72. Zhang J., Sturla S., Lacroix C., Schwab C. Gut microbial glycerol metabolism as an endogenous acrolein source. mBio. 2018;9(1):e01947-17.

73. Nonneman A., Robberecht W., Van Den Bosch L.V. The role of oligodendroglial dysfunction in amyotrophic lateral sclerosis. Neurodegen. Dis. Manag. 2014;4(3):223–239.

74. van Horssen J., Schreibelt G., Drexhage J., Hazes T., Dijkstra C.D., van der Valk P., de Vries H.E. Severe oxidative damage in multiple sclerosis lesions coincides with enhanced antioxidant enzyme expression. Free Radical. Biol. Med. 2008;45(12):1729–1737.

75. Spaas J., van Veggel L., Schepers M., Tiane A., van Horssen J., Wilson D.M. 3rd, Moya P.R., Piccart E., Hellings N., Eijnde B.O., Derave W., Schreiber R., Vanmierlo T. Oxidative stress and impaired oligodendrocyte precursor cell differentiation in neurological disorders. Cell Mol. Life Sci. 2021;78(10):4615–4637.

76. Witte M.E., Geurts J.J., de Vries H.E., van der Valk P., van Horssen J. Mitochondrial dysfunction: a potential link between neuroinflammation and neurodegeneration? Mitochondrion. 2010;10(5):411–418.

77. Padureanu R., Albu C.V., Mititelu R.R., Bacanoiu M.V., Docea A.O., Calina D., Padureanu V., Olaru G., Sandu R.E., Malin R.D., Buga A.M. Oxidative stress and inflammation interdependence in multiple sclerosis. J. Clin. Med. 2019;8(11):1815.

78. Michaličková D., Šíma M., Slanař O. New insights in the mechanisms of impaired redox signaling and its interplay with inflammation and immunity in multiple sclerosis. Physiol. Res. 2020;69(1):1–19.

79. Ragupathy H., Vukku M., Barodia S.K. Cell-typespecific mitochondrial quality control in the brain: a plausible mechanism of neurodegeneration. Int. J. Mol. Sci. 2023;24(19):14421.

80. Petersen R.C., Thomas R.G., Grundman M., Bennett D., Doody R., Ferris S., Galasko D., Jin S., Kaye J., Levey A., Pfeiffer E., Sano M., van Dyck C.H., Thal L.J., Alzheimer’s Disease Cooperative Study Group. Vitamin E and donepezil for the treatment of mild cognitive impairment. N. Engl. J. Med. 2005;352(23):2379–2388.

81. Kamat C.D., Gadal S., Mhatre M., Williamson K.S., Pye Q.N., Hensley K. Antioxidants in central nervous system diseases: preclinical promise and translational challenges. J. Alzheimers Dis. 2008;15(3):473–493.

82. Bjelakovic G., Nikolova D., Gluud L.L., Simonetti R.G., Gluud C. Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database Syst. Rev. 2012;2012(3):CD007176.

83. Antonenko Y.N., Avetisyan A.V., Bakeeva L.E., et al. Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: synthesis and in vitro studies. Biochemistry (Mosc.). 2008;73(12):1273–1287.

84. Fetisova E.K., Muntyan M.S., Lyamzaev K.G., Chernyak B.V. Therapeutic effect of the mitochondriatargeted antioxidant SkQ1 on the culture model of multiple sclerosis. Oxid. Med. Cell. Longev. 2019;2019:2082561.

85. Fock E.M., Parnova R.G. Protective effect of mitochondria-targeted antioxidants against inflammatory response to lipopolysaccharide challenge: a review. Pharmaceutics. 2021;13(2):144.

86. Vorobjeva N.V., Chernyak B.V. NETosis: molecular mechanisms, role in physiology and pathology. Biochemistry (Mosc.). 2020;85(10):1178–1190.


Review

For citations:


Fetisova E.K., Vorobjeva N.V., Muntyan M.S. Multiple sclerosis. Some features of pathology and prospects for therapy. Part 1. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2024;79(2):87-101. (In Russ.) https://doi.org/10.55959/MSU0137-0952-16-79-2-2

Views: 377


ISSN 0137-0952 (Print)