The study of the pannexin 1 role in the regulation of contractile activity of longitudinal smooth muscle layer in the mouse portal vein
https://doi.org/10.55959/MSU0137-0952-16-79-2-1
Abstract
Pannexin 1 is a protein capable of forming channels for the release of ATP from animal cells. In small arteries, it regulates the contraction of smooth muscle cells, due to a functional connection with α1D-adrenoceptors. Veins differ from arteries in structure and mechanisms of regulation of contraction, but the functions of pannexin in the venous bed have been poorly studied. The purpose of this study was to investigate the involvement of pannexin 1 in regulating the rhythmic contractile activity of the longitudinal smooth muscle layer in the mouse portal vein. The contractions of longitudinal vein preparations obtained from mice with global knockout of pannexin 1 gene and from С57Bl/6J mice (wild type) were studied in isometric mode. Venous preparations from both groups of mice demonstrated spontaneous rhythmic activity but the frequency of contractions in pannexin 1 knockout mice was higher than in wild-type mice. The α1-adrenoceptor agonists phenylephrine and methoxamine stimulated venous contractions. In the knockout group, the effect of phenylephrine, which has a higher affinity for α1D-adrenoceptors, was lower, while the effect of methoxamine did not differ between groups. Evoking an increase in the frequency of vein contractions, exogenous ATP also demonstrated a less pronounced effect in pannexin 1 knockout mice compared to wild-type mice. While in wild-type mice, the change in the frequency of vein contractions induced by phenylephrine and ATP (but not methoxamine) inversely correlated with the baseline frequency of contractions, such dependence was not observed in knockout mice. In the presence of apyrase, which degrades extracellular ATP, the effect of phenylephrine on venous contraction frequency became less pronounced in wild-type mice but remained unchanged in knockout mice. Thus, in the mouse portal vein, pannexin does not directly participate in the generation of myogenic rhythmic activity but may regulate it. The obtained results suggest that in the longitudinal smooth muscle layer of the mouse portal vein, pannexin 1 channels serve as the main pathway for ATP secretion, and they are functionally associated with α1-adrenоceptors.
About the Authors
M. G. PechkovaRussian Federation
Bolshoy Karetny per. 19–1, Moscow, 127051;
Khoroshevskoe shosse 76A, Moscow, 123007
O. O. Kiryukhina
Russian Federation
Bolshoy Karetny per. 19–1, Moscow, 127051
O. S. Tarasova
Russian Federation
Khoroshevskoe shosse 76A, Moscow, 123007;
Department of Human and Animal Physiology, Faculty of Biology, Leninskiye gory 1–12, Moscow, 119234;
School of Basic Medicine, Lomonosovsky pr. 27–1, Moscow, 119991
References
1. Shestopalov V.I., Panchin Y. Pannexins and gap junction protein diversity. Cell. Mol. Life Sci. 2008;65(3):376–394.
2. Penuela S., Gehi R., Laird D.W. The biochemistry and function of pannexin channels. Biochim. Biophys. Acta. 2013;1828(1):15–22.
3. Dahl G. ATP release through pannexon channels. Philos. Trans. R. Soc. B Biol. Sci. 2015;370(1672):20140191.
4. Taylor K.A., Wright J.R., Mahaut-Smith M.P. Regulation of Pannexin-1 channel activity. Biochem. Soc. Trans. 2015;43(3):502–507.
5. Billaud M., Chiu Y.H., Lohman A.W., Parpaite T., Butcher J.T., Mutchler S.M., DeLalio L.J., Artamonov M.V., Sandilos J.K., Best A.K., Somlyo A.V., Thompson R.J., Le T.H., Ravichandran K.S., Bayliss D.A., Isakson B.E. A molecular signature in the pannexin1 intracellular loop confers channel activation by the α1 adrenoreceptor in smooth muscle cells. Sci. Signal. 2015;8(364):ra17.
6. Кирюхина О.О., Гайнуллина Д.К., Панчин Ю.В., Шестопалов В.И., Тарасова О.С. Изменения пуринергической регуляции артерий брыжейки у мышей с нокаутом гена паннексина 1. Биологические мембраны. 2017;34(6):137–146.
7. Billaud M., Lohman A.W., Straub A.C., Looft-Wilson R., Johnstone S.R., Araj C.A., Best A.K., Chekeni F.B., Ravichandran K.S., Penuela S., Laird D.W., Isakson B.E. Pannexin1 regulates α1-adrenergic receptor- mediated vasoconstriction. Circ. Res. 2011;109(1):80–85.
8. Dunaway L.S., Billaud M., Macal E., Good M.E., Medina C.B., Lorenz U., Ravichandran K., Koval M., Isakson B.E. Amount of Pannexin 1 in smooth muscle cells regulates sympathetic nerve-induced vasoconstriction. Hypertension. 2023;80(2):416–425.
9. Grimmer B., Krauszman A., Hu X., Kabir G., Connelly K.A., Li M., Grune J., Madry C., Isakson B.E., Kuebler W.M. Pannexin 1: a novel regulator of acute hypoxic pulmonary vasoconstriction. Cardiovasc. Res. 2022;118(11):2535–2547.
10. Ladd Z., Su G., Hartman J., Lu G., Hensley S., Upchurch G.R., Sharma A.K. Pharmacologic inhibition by spironolactone attenuates experimental abdominal aortic aneurysms. Front. Cardiovasc. Med. 2023;10(2):555–567.
11. Vanlandewijck M., He L., Mäe M.A., Andrae J., Ando K., Del Gaudio F., Nahar K., Lebouvier T., Laviña B., Gouveia L., Sun Y., Raschperger E., Räsänen M., Zarb Y., Mochizuki N., Keller A., Lendahl U., Betsholtz C. A molecular atlas of cell types and zonation in the brain vasculature. Nature. 2018;554(7693):475–480.
12. Reho J.J., Zheng X., Fisher S.A. Smooth muscle contractile diversity in the control of regional circulations. Am. J. of Physiol. Heart Circ. Physiol. 2014;306(2):H163–H172.
13. Takahashi S., Hitomi J., Satoh Y.I., Takahashi T., Asakura H., Ushiki T. Fine structure of the mouse portal vein in relation to its peristaltic movement. Arch. Histol. Cytol. 2002;65(1):71–82.
14. Guimarāes C.L., Calixto J.B., Rae G.A. Potent constrictor actions of endothelin-1, endothelin-2, and endothelin-3 in rat isolated portal vein. Hypertension. 1992;19(2):II79–II86.
15. Печкова М.Г., Кирюхина О.О., Виноградова О.Л., Тарасова О.С. Исследование сократительной активности портальной вены мыши в полетном эксперименте «Бион-М2»: обоснование актуальности и разработка экспериментальной модели. Авиакосмическая и экологическая медицина. 2023;57(5):141–148.
16. Andelova K., Benova T.E., Bacova B.S., Sykora M., Prado N.J., Diez E.R., Hlivak P., Tribulova N. Cardiac connexin-43 hemichannels and pannexin1 channels: Provocative antiarrhythmic targets. Int. J. Mol. Sci. 2021;22(1):260.
17. Kienitz M-C., Bender K., Dermietzel R., Pott L., Zoidl G. Pannexin 1 constitutes the large conductance cation channel of cardiac myocytes. J. Biol. Chem. 2011;286(1):290–298.
18. Battulin N., Kovalzon V.M., Korablev A., Serova I., Kiryukhina O.O., Pechkova M.G., Bogotskoy K.A., Tarasova O.S., Panchin Y. Pannexin 1 transgenic mice: human diseases and sleep-wake function revision. Int. J. Mol. Sci. 2021;22(10):5269
19. Kountz T.S., Lee K.S., Aggarwal-Howarth S., Curran E., Park J.M., Harris D.A., Stewart A., Hendrickson J., Camp N.D., Wolf-Yadlin A., Wang E.H., Scott J.D., Hague C. Endogenous N-terminal domain cleavage modulates α1D-Adrenergic receptor pharmacodynamics. J. Biol. Chem. 2016;291(35):18210–18221.
20. Koval M., Cwiek A., Carr T., Good M.E., Lohman A.W., Isakson B.E. Pannexin 1 as a driver of inflammation and ischemia-reperfusion injury. Purinergic Signal. 2021;17(4):521–531.
21. Van Helden D.F., Imtiaz M.S. Venous vasomotion. Adv. Exp. Med. Biol. 2019;1124:313–328.
22. Whyte-Fagundes P., Kurtenbach S., Zoidl C., Shestopalov V.I., Carlen P.L., Zoidl G. A potential compensatory role of panx3 in the VNO of a Panx1 knock out mouse model. Front. Mol. Neurosci. 2018;11:135.
23. Petric S., Klein S., Dannenberg L., Lahres T., Clasen L., Schmidt K.G., Ding Z., Donner B.C. Pannexin-1 Deficient mice have an increased susceptibility for atrial fibrillation and show a QT-prolongation phenotype. Cell. Physiol. Biochem. 2016;38(2):487–501.
24. Gurung I. S., Kalin A., Grace A.A., Huang C. L-H. Activation of purinergic receptors by ATP induces ventricular tachycardia by membrane depolarization and modifications of Ca2+ homeostasis. J. Mol. Cell. Cardiol. 2009;47(5):622–633.
25. Bao R., Shui X., Hou J., Li J., Deng X., Zhu X., Yang T. Adenosine and the adenosine A2A receptor agonist, CGS21680, upregulate CD39 and CD73 expression through E2F-1 and CREB in regulatory T cells isolated from septic mice. Int. J. Mol. Med. 2016;38(3):969–75.
Review
For citations:
Pechkova M.G., Kiryukhina O.O., Tarasova O.S. The study of the pannexin 1 role in the regulation of contractile activity of longitudinal smooth muscle layer in the mouse portal vein. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2024;79(2):102-111. (In Russ.) https://doi.org/10.55959/MSU0137-0952-16-79-2-1