Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

Streptomycetes from the rhizosphere of three medicinal plants as plant growth stimulants and biocontrol agent

https://doi.org/10.55959/MSU0137-0952-16-79-2-4

Abstract

The number and functional structure of streptomycetes complexes isolated from the rhizosphere of three species of рlantae medicinales from the Vyatka-Kama Urals (Kirov region) – Melissa officinalis L., Urtica dioica L. and Capsella bursa-pastoris L. investigated. The total number of representatives of the genus Streptomyces varied in the rhizosphere from (3.0±1.6) × 105 to (1.4±0.5) × 106 CFU/g of substrate, depending on the type of plant, the proportion in the prokaryotic complex of different species varied from 4% (C. bursa-pastoris) to 31% (M. officinalis). Using selective treatment, 36 strains of bacteria were isolated, the cultural and morphological features of which are characteristic of representatives of the genus Streptomyces. It was found that the majority (82%) of isolates from the rhizosphere of M. officinalis are capable of synthesizing water-soluble metabolites of antifungal action with moderate and high activity. In the rhizosphere of C. bursa-pastoris, 42% of the isolates are able to effectively carry out enzymatic hydrolysis of cellulose. The strains isolated from the roots of U. dioica stood out among others with the most pronounced phytostimulating effect. Based on the results of the evaluation of the antagonistic, cellulolytic and phytoregulatory properties of streptomycetes, nine promising strains capable of synthesizing indole compounds (indolyl-3-acetic acid) in an amount of up to 24.0±0.9 µg/ml and a radial growth rate of up to 65.7±8.8 µm/h were selected, which can have a positive effect on the growth and development of agricultural plants. The results obtained will be useable for determining strategies for the search, identification and use of this group of bacteria as biological control agents and plant growth stimulators.

About the Authors

I. G. Shirokikh
Federal Scientific Agricultural Center of the North-East; Vyatka State University
Russian Federation

Lenina st. 166а, Kirov, 610007;

Moskovskaya st. 36, Kirov, 610000



S. E. Mokrushina
Federal Scientific Agricultural Center of the North-East; Vyatka State University
Russian Federation

Lenina st. 166а, Kirov, 610007;

Moskovskaya st. 36, Kirov, 610000



References

1. Berendsen R.L, Pieterse C.M, Bakker P.A. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012;17(8):478–486.

2. Turner T.R, James E.K, Poole P.S. The plant microbiome. Genome Biol. 2013;14(6):209.

3. Rey T, Dumas B. Plenty is no plague: Streptomyces symbiosis with crops. Trends Plant Sci. 2017;22(1):30–37.

4. Vurukonda S.S.K.P, Giovanardi D, Stefani E. Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. Int. J. Mol. Sci. 2018;19(4):952.

5. Devi S., Sharma P., Rana A., Pal J., Kumari A. Diversity and plant growth-promoting potential of actinomycetes associated with the rhizosphere of Arnebia euchroma from Himachal Pradesh (India). J. Environ. Biol. 2021;42(4):964–972.

6. Wahyudi A.T., Priyanto J.A., Fijrina H.N., Mariastuti H.D., Nawangsih A.A. Streptomyces spp. from rhizosphere soil of maize with potential as plant growth promoter. Biodiversitas. 2019;20(9):2547–2553.

7. Fatmawati U., Meryandini A., Nawangsih A.A., Wahyudi A.T. Screening and characterization of actinomycetes isolated from soybean rhizosphere for promoting plant growth. Biodiversitas. 2019;20(10):2970–2977.

8. Cinkocki R., Lipkova N., Javorekova J., Makova J., Medo J., Ducsay L. The Impact of growth-promoting Streptomycetes isolated from Rhizosphere and bulk soil on Oilseed Rape (Brassica napus L.) growth parameters. Sustainability. 2021;13(10):5704.

9. Nalini M.S, Prakash H.S. Diversity and bioprospecting of actinomycete endophytes from the medicinal plants. Lett. Appl. Microbiol. 2017;64(4):261–270.

10. Harrison J.G, Griffin E.A. The diversity and distribution of endophytes across biomes, plant phylogeny and host tissues: how far have we come and where do we go from here? Environ. Microbiol. 2020;22(6):2107–2123.

11. Syiemiong D., Jha D.K., Adhikari S., Mylliemngap D., Kharbuki R., Lyngdoh D., Warlarpih J.P., Paul N., Lamare K.M., Wahlang C., Lyngkhoi R. Rhizospheres of Rubus ellipticus and Ageratina riparia from Meghalaya exhibit Actinomycetota that promote plant growth. J. Appl. Biol. Biotechnol. 2023;11(2):114–122.

12. Gonzalez-Franco A.C., Robles-Hernández L. Antagonist activities and phylogenetic relationships of actinomycetes isolated from an Artemisia habitat. Rev. Argent. Microbiol. 2022;54(4):326–334.

13. Mahulette F., Utarti E., Kurnia T.S. Isolation and potency of Actinomycetes from rhizosphere of nutmeg (Myristica fragrans Houtt). Biogenesis: Jurnal Ilmiah Biologi. 2023;11(1):59–68.

14. Wang C., Wang Y., Ma J., Hou Q., Liu K., Ding Y., Du B. Screening and whole-genome sequencing of two Streptomyces species from the rhizosphere soil of peony reveal their characteristics as plant growth-promoting rhizobacteria. BioMed Res. Int. 2018;2018(1):2419686.

15. Гаузе Г.Ф., Преображенская Т.П., Свешникова М.А., Терехова Л.П., Максимова Т.С. Определитель актиномицетов. М.: Наука; 1983. 246 с.

16. Шешегова Т.К., Щеклеина Л.М., Лисицын Е.М. Генотипическая и физиологическая адаптация сортов ячменя селекции ФАНЦ Северо-Востока к грибным болезням. Вестник КрасГАУ. 2022;8(185):33–41.

17. Билай В.И. Методы экспериментальной микологии. М.: Рипол Классик; 1973. 240 с.

18. Wood P.J., Erfle J.D., Teather R.M. Use of complex formation between Congo Red and polysaccharides in detection and assay of polysaccharide hydrolases. Methods Enzymoly: Biomass Part A: Cellulose and Hemicellulose, vol. 160. Eds. W.A. Wood and S.T. Kellogg. Elsevier Inc.; 1988:59–74.

19. Егоршина А.А., Хайруллин Р.М., Лукьянцев М.А., Курамшина З.М., Смирнова Ю.В. Фосфатмобилизующая активность эндофитных штаммов Bacillus subtilis и их влияние на степень микоризации корней пшеницы. Журнал СФУ. Биология. 2011;2:172–182.

20. Libbert E., Risch H. Interactions between plants and epiphytic bacteria regarding their auxin metabolism. Physiol. Plant. 1969;22(2):51–58.

21. Ling N., Zhang W., Wang D., Mao J., Huang Q., Guo S., Shen Q. Root exudates from grafted-root watermelon showed a certain contribution in inhibiting Fusarium oxysporum f. sp. niveum. PLoS One. 2013;8(5):e63383.

22. Compant S., Samad A., Faist H., Sessitsch A. A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. J. Adv. Res. 2019;19:29–37.

23. Trivedi P., Leach J.E., Tringe S.G., Sa T., Singh B.K. Plant-microbiome interactions, from community assembly to plant health. Nat. Rev. Microbiol. 2020;18(11):607–621.

24. Frantzeskakis L., Di Pietro A., Rep M., Schirawski J., Wu C.H., Panstruga R. Rapid evolution in plant– microbe interactions – a molecular genomics perspective. New Phytol. 2020;225(3):1134–1142.

25. Etalo D.W., Jeon J.S., Raaijmakers J.M. Modulation of plant chemistry by beneficial root microbiota. Nat. Prod. Rep. 2018;35(5):398–409.

26. Pandey S.S., Singh S., Babu C.S., Shanker K., Srivastava N.K., Kalra A. Endophytes of opium poppy differentially modulate host plant productivity and genes for the biosynthetic pathway of benzylisoquinoline alkaloids. Planta. 2016;243(5):1097–1114.

27. Pandey S.S., Singh S., Pandey H., Srivastava M., Ray T., Soni S., Pandey A., Shanker K., Babu C.S.V., Banerjee S., Gupta M.M., Kalra A.. Endophytes of Withania somnifera modulate in planta content and the site of withanolide biosynthesis. Sci. Rep. 2018;8(1):5450.

28. Tsavkelova E.A., Klimova S.Y., Cherdyntseva T.A. Microorganisms–producers of growth stimulants and their practical application. Appl. Biochem. Microbiol. 2006;42(2):133–143.


Review

For citations:


Shirokikh I.G., Mokrushina S.E. Streptomycetes from the rhizosphere of three medicinal plants as plant growth stimulants and biocontrol agent. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2024;79(2):121-128. (In Russ.) https://doi.org/10.55959/MSU0137-0952-16-79-2-4

Views: 104


ISSN 0137-0952 (Print)