Climatic response of radial growth of Larix cajanderi in the Northern and Central Yakutia
https://doi.org/10.55959/MSU0137-0952-16-79-2-6
Abstract
Warming trends in high latitudes will lead to changes in the thermo-hydrological regime of permafrost soils, affecting the structure and functioning of northern ecosystems. The study of radial tree growth response to current environmental conditions is commonly used to understand the future reaction of trees. This study evaluates the response of four Cajander larch (Larix cajanderi Mayr) sites in the continuous permafrost region to different environmental conditions in Northern and Central Yakutia (Republic of Sakha). Correlation coefficients between tree-ring width indexes and climate parameters were calculated over the 1966–2021 period. The results showed that air temperature is the main factor limiting the radial tree growth in all the sites (mainly June temperature; r = 0,38–0,41; p < 0,01). However, the timing and intensity of the temperature sensitivity increases with the latitude. The most sensitive to climate woody plants grow in the northern part of the study region where growing season is rather short. Running correlations showed a general decreasing trend in intensity of the temperature response in radial growth chronologies. Probably it is linked to the increase in summer temperatures in recent decades, thus highlighting the ecological plasticity of the larch trees. These results can help to assess changes in the productivity of the forest ecosystems in particular regions of boreal zone.
About the Authors
K. I. KhotcinskaiaRussian Federation
79 Svobodnyy pr., Krasnoyarsk, 660041
O. V. Sergeeva
Russian Federation
79 Svobodnyy pr., Krasnoyarsk, 660041
A. V. Kirdyanov
Russian Federation
79 Svobodnyy pr., Krasnoyarsk, 660041;
50/28 Akademgorodok, Krasnoyarsk, 660036
A. N. Nikolaev
Russian Federation
58 Belinskogo str., Yakutsk, 677000
K. V. Akulinina
Russian Federation
79 Svobodnyy pr., Krasnoyarsk, 660041
N. N. Koshurnikova
Russian Federation
79 Svobodnyy pr., Krasnoyarsk, 660041
A. I. Kolmogorov
Russian Federation
79 Svobodnyy pr., Krasnoyarsk, 660041;
58 Belinskogo str., Yakutsk, 677000
A. Arzac
Russian Federation
79 Svobodnyy pr., Krasnoyarsk, 660041
References
1. Николаев А.Н., Федоров П.П., Десяткин А.Р. Влияние гидродинамического режима мерзлотных почв на радиальный прирост лиственницы и сосны в Центральной Якутии. Сиб. экол. журн. 2011;(2):189–201.
2. Поздняков Л.К. Даурская Лиственница. М.: Наука; 1975. 312 с. 3. Vaganov E.A., Hughes M.K., Kirdyanov A.V., Schweingruber F.H., Silkin P.P. Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature. 1999;400(6740):149–151.
3. Kirdyanov A., Hughes M., Vaganov E., Schweingruber F., Silkin P. The importance of early summer temperature and date of snow melt for tree growth in the Siberian Subarctic. Trees. 2003;17:61–69.
4. Kirdyanov A.V., Saurer M., Siegwolf R., Knorre A.A., Prokushkin A.S., Churakova O.V., Fonti M.V., Büntgen U. Long-term ecological consequences of forest fires in the continuous permafrost zone of Siberia. Environ. Res. Lett. 2020;15(3):034061.
5. Kirdyanov A.V, Saurer M., Arzac A., Knorre A.A., Prokushkin A.S., Churakova O.V, Arosio T., Bebchuk T., Siegwolf R., Büntgen U. Science of the total environment thawing permafrost can mitigate warming-induced drought stress in boreal forest trees. Sci. Total Environ. 2024;912:168858.
6. Rantanen M., Karpechko A.Y., Lipponen A. Nordling K., Hyvärinen O., Ruosteenoja K., Vihma T., Laaksonen A. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 2022;3(1):168.
7. Jorgenson M.T., Romanovsky V., Harden J., Shur Y., O’Donnell J., Schuur E.A.G., Kanevskiy M., Marchenko S. Resilience and vulnerability of permafrost to climate change. Can. J. For. Res. 2010;40(7):1219–1236.
8. Serreze M.C., Dyurgerov M., Romanovsky V., Oechel W.C., Zhang J.T., Barry R.G., Walsh J.E., Chappin III F.S., Osterkamp T. Observational evidence of recent change in the northern high-latitude environment. Clim. Chang. 2000;46(1–2):159–207.
9. Шерстюков А.Б., Шерстюков Б.Г. Пространственные особенности и новые тенденции в изменениях термического состояния почвогрунтов и глубины их сезонного протаивания в зоне многолетней мерзлоты. Метеорол. гидрол. 2015;(2):5–12.
10. Им С.Т., Харук В.И., Ли В.Г. Миграция северной границы вечнозелёных хвойных древостоев в Сибири в XXI столетии. Совр. пробл. дист. зонд. Земли косм. 2020;17(1):176–187.
11. Осокин Н.И., Сосновский А.В. Влияние метеорологических условий на теплоизоляционные свойства мохового покрова по данным измерений на Шпицбергене. Криосф. Земли. 2021;25(4):17–25.
12. Linderholm H.W. Growing season changes in the last century. Agric. For. Meteorol. 2006;137(1–2):1–14.
13. Prokushkin A.S., Hagedorn F., Pokrovsky O.S., Viers J., Kirdyanov A.V., Masyagina O.V., Prokushkina M.P., McDowell W.H. Permafrost regime affects the nutritional status and productivity of larches in Central Siberia. Forests. 2018;9(6):314.
14. Andresen C.G., Lawrence D.M., Wilson C.J., McGuire A.D., Koven C., Schaefer K., Jafarov E., Peng S., Chen X., Gouttevin I., Burke E., Chadburn S., Ji D., Chen G., Hayes D., Zhang W. Soil moisture and hydrology projections of the permafrost region – a model intercomparison. Cryosphere. 2020;14(2):445–459.
15. Kharuk V.I., Ranson K.J., Petrov I.Y.A., Dvinskaya M.L., Im S.T., Golyukov A.S. Larch (Larix dahurica Turcz) growth response to climate change in the Siberian permafrost zone. Reg. Environ. Change. 2019;19:233–243.
16. Peel M.C., Finlayson B.L., McMahon T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007;11(5):1633–1644.
17. Булыгина О.Н., Коршунова Н.Н., Разуваев В.Н. Специализированные массивы данных для климатических исследований. Труды Всерос. науч.-исслед. ин-та гидромет. информации – МЦД. 2014;(177):136–148.
18. Guijarro J.A. Homogenization of climatic series with Climatol. Reporte Técnico State Meteorological Agency (AEMET), Balearic Islands Office, Spain. 2018. 20 pp.
19. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2023. URL https://www.R-project.org/.
20. Grissino-Mayer H.D. Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree-Ring Res. 2001;57(2):205–221.
21. Cook E.R., Holmes R. Guide for computer program ARSTAN. The international tree-ring data bank program library version 2.0. Esd. H.D. Grissino-Mayer, R.L. Holmes, and H.C. Fritts: Universisty of Arizona; 1996:75–87.
22. Cook E.R., Peters K. The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bulletin. 1981;41:45–53.
23. Wigley T.M.L., Briffa K.R., Jones P.D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Appl. Meteorol. 1984;23(2):201–213.
24. Zang C., Biondi F., Treeclim: An R package for the numerical calibration of proxy climate relationships. Ecography. 2015;38(4):431–436.
25. Hughes M.K., Vaganov E.A., Shiyatov S.G., Touchan R., Funkhuoser G. Twentieth-century summer warmth in nothern Yakutia in a 600-year context. Holocene. 1999;9(5):629–634.
26. Kirdyanov A.V., Treydte K.S., Nikolaev A., Helle G., Schleser G.H. Climate signals in tree-ring width, wood density and δ13C from larches in Eastern Siberia (Russia). Chem. Geol. 2008;252(1–2):31–41.
27. Kirdyanov A.V., Piermattei A., Kolář T., Rybníček M., Krusic P.J., Nikolaev A.N., Reinig F., Büntgen U. Notes towards an optimal sampling strategy in dendroclimatology. Dendrochronologia. 2018;52:162–166.
28. Saurer M., Kirdyanov A.V., Prokushkin A.S., Rinne K.T., Siegwolf R.T.W. The impact of an inverse climate-isotope relationship in soil water on the oxygen-isotope composition of Larix gmelinii in Siberia. New Phytol. 2016;209(3):955–964.
29. Churakova (Sidorova) O.V., Porter T.J., Zharkov M.S., Fonti M.V., Barinov V.V., Taynik A.V., Kirdyanov A.V., Knorre A.A., Wegmann M., Trushkina T.V., Koshurnikova N.N., Vaganov E.A., Myglan V.S., Siegwolf R.T.W., Saurer M. Climate impacts on tree-ring stable isotopes across the Northern Hemispheric boreal zone. Sci. Total Environ. 2023;870: 161644.
30. Arzac A., Popkova M., Anarbekova A., Olano J.M., Gutiérrez E., Nikolaev A., Shishov V. Increasing radial and latewood growth rates of Larix cajanderi Mayr. and Pinus sylvestris L. in the continuous permafrost zone in Central Yakutia (Russia). Ann. For. Sci. 2019;76:96.
31. Huang J.G., Bergeron Y., Denneler B., Berninger F., Tardif J. Response of Forest Trees to Increased Atmospheric CO2. Crit. Rev. Plant Sci. 2007;26(5–6):265–283.
32. Liu X., Zhao L., Voelker S., Xu G., Zeng X., Zhang X., Zhang L., Sun W., Zhang Q., Wu G., Li X. Warming and CO2 enrichment modified the ecophysiological responses of Dahurian larch and Mongolia pine during the past century in the permafrost of northeastern China. Tree Physiol. 2019;39(1):88–103.
Review
For citations:
Khotcinskaia K.I., Sergeeva O.V., Kirdyanov A.V., Nikolaev A.N., Akulinina K.V., Koshurnikova N.N., Kolmogorov A.I., Arzac A. Climatic response of radial growth of Larix cajanderi in the Northern and Central Yakutia. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2024;79(2):137-143. (In Russ.) https://doi.org/10.55959/MSU0137-0952-16-79-2-6