The influence of hydrothermal moistening on the radial growth of larch in Central Yakutia
https://doi.org/10.55959/MSU0137-0952-16-79-2-7
Abstract
Dendrochronological assessments were conducted on larch samples across three sites within the Tabaga region (central part of Yakutia, Russia), resulting in the creation of a tree-ring width database. The plots are characterized as larch-birch lingonberry-forb forest type. More than 20 samples were collected from each plot – 73 cores. The methodology involved the selection of “reference years” – years in which the majority of trees demonstrated the narrowest or widest growth rings. A correlation between the width of larch tree rings and the Selyaninov hydrothermal coefficient was identified. Analysis of the comprehensive statistical data set from site T3 established a relationship between the hydrothermal conditions in Central Yakutia during August and the radial growth of larch trees over the period of 1920–2018. It is hypothesized that there is a latitudinal dependency of radial growth on hydrothermal conditions among larch trees in the Northern Hemisphere, in light of climate change and other geophysical factors.
About the Authors
X. ZhangRussian Federation
Belinsky St., 58, Yakutsk, 677000
A. N. Nikolaev
Russian Federation
Belinsky St., 58, Yakutsk, 677000
A. I. Kolmogorov
Russian Federation
Belinsky St., 58, Yakutsk, 677000
M. S. Vasiliev
Russian Federation
Merzlotnaya St., 36, Yakutsk, 677010
L. A. Pestryakova
Russian Federation
Belinsky St., 58, Yakutsk, 677000
References
1. Zhang Z. Tree-rings, a key ecological indicator of environment and climate change. Ecol. Indic. 2015;51:107–116.
2. Camarero J.J., Valeriano C., Gazol A., Colangelo M., Sanchez-Salguero R. Climate differently impacts the growth of coexisting trees and shrubs under semi-arid mediterranean conditions. Forests. 2021;12(3):381.
3. He M., Yang B., Rossi S., Brauning A., Shishov V., Kang S. Simulated and predicted responses of tree stem radial growth to climate change – A case study in semi-arid north central China. Dendrochronologia. 2019;58:125632.
4. Szejner P., Belmecheri S., Ehleringer J.R., Monson R.K. Recent increases in drought frequency cause observed multi-year drought legacies in the tree rings of semi-arid forests. Oecologia. 2020;192(1):241–259.
5. Gavrilov M.B., An W., Xu C., Radakovic M.G., Hao Q., Yang F., Guo Z., Peric Z., Gavrilov G., Marcovic S.B. Independent aridity and drought pieces of evidence based on meteorological data and tree ring data in Southeast Banat, Vojvodina, Serbia. J. Atmos. 2019;10(10):586.
6. Opala-Owczarek M., Niedzwiedz T. Last 1100 yr of precipitation variability in western central Asia as revealed by tree-ring data from the Pamir-Alay. Quat. Res. 2019;91(1):81–95.
7. Николаев А.Н., Федоров П.П., Десяткин А.Р. Влияние гидродинамического режима мерзлотных почв на радиальный прирост лиственницы и сосны в Центральной Якутии. Сиб. экол. журн. 2011;18(2):189–201.
8. Николаев А.Н., Исаев А.П., Федоров П.П. Радиальный прирост лиственницы в Центральной Якутии в связи с изменением климата за последние 120 лет. Экология. 2011;(4):243–250.
9. Федоров П.П., Десяткин А.Р. Связь температурного режима мерзлотных почв и радиального прироста лиственницы в Центральной Якутии. Усп. совр. естест. 2016;(7):185–189.
10. Николаев А.Н., Федоров П.П. Влияние климатических факторов и термического режима мерзлотных почв Центральной Якутии на радиальный прирост лиственницы и сосны. Лесоведение. 2004;(6):3–13.
11. Nikolaev A.N., Fedorov P.P., Desyatkin A.R. Influence of climate and soil hydrothermal regime on radial growth of Larix cajanderi and Pinus sylvestris in central Yakutia, Russia. Scand. J. For. Res. 2009;24(3):217–226.
12. Горохов А.Н., Федоров А.Н. Современные тенденции изменения климата в Якутии. Геогр. природ. рес. 2018;(2):111–119.
13. Desyatkin A., Fedorov P., Filippov N., Desyatkin R. Climate change and Its influence on the active layer depth in Central Yakutia. Land. 2020;10(1):3.
14. Rinn F. TSAP-Win: Time series analysis and presentation for dendrochronology and 409 related applications. User reference, Heidelberg. 2003. URL: https://cir.nii.ac.jp/crid/1572543024876591616 (дата обращения: 30.07.2024).
15. Grissino-Mayer H.D. Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree-ring Res. 2001;57(2):205–221.
16. R Core Team (2022) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. URL: https://www.R-project.org (дата обращения: 30.07.2024).
17. Bunn A.G. A dendrochronology program library in R (dplR). Dendrochronologia. 2008;26(2):115–124.
18. Zang C., Blondi F. Treeclim: An R package for the numerical calibration of proxy-climate relationships. Ecography. 2015;38(4):431–436.
19. Бабушкина Е.А., Белокопытова Л.В. Климатический сигнал в радиальном приросте хвойных в лесостепи юга Сибири и его зависимость от локальных условий местопроизрастания. Экология. 2014;(5):323–323.
20. Van der Maaten-Theunissen, Van der Maaten E, Bouriaud O. PointRes: An R package to analyze pointer years and components of resilience. Dendrochronologia. 2015;35:34–38.
Review
For citations:
Zhang X., Nikolaev A.N., Kolmogorov A.I., Vasiliev M.S., Pestryakova L.A. The influence of hydrothermal moistening on the radial growth of larch in Central Yakutia. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2024;79(2):144-150. (In Russ.) https://doi.org/10.55959/MSU0137-0952-16-79-2-7