Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

Рrenatal hypoxia of the period of early organogenesis influence on heart rate variability in rat pups during the first month of life

https://doi.org/10.55959/MSU0137-0952-16-79-2-8

Abstract

Recently, there has been increasing evidence in favor of prenatal programming influence on the development of many diseases in adults, including cardiovascular pathologies. However, the mechanisms underlying the programming effect of developing cardiovascular dysfunction remain unclear, which prevents timely diagnosis and identification of potential clinical therapy. The aim of this study was to evaluate the effects of acute hypoxia during early organogenesis on heart rhythm formation and its regulation in early postnatal development in rats. It was shown that acute hypoxia suffered by rat pups on the 10th day of intrauterine development did not change the overall dynamics of heart rhythm formation in the first month of postnatal period. However, the experimental animals showed lower heart rate compared to control in the first weeks of life in addition to higher values of rhythm variability and the RMSSD index (root mean square of successive differences in R-R intervals) indicating an expressed tone of parasympathetic division of the ANS. Moreover in the first week of life the basic heart rate following pharmacological blockade of sympathetic and parasympathetic cardiotropic nervous influences in rats suffered from prenatal hypoxia turned out to be 15% higher than in control animals, supposing prenatal hypoxia influence on heart rhythm formation due to intracardiac mechanisms.

About the Authors

A. V. Graf
Lomonosov Moscow State University; I.V. Kurchatov Phystech School of Nature-like, Plasma and Nuclear Technologies
Russian Federation

Faculty of Biology, Leninskie gory 1–12, 119234 Moscow;

Maximova St. 4, 123098, Moscow



A. S. Maklakova
Lomonosov Moscow State University
Russian Federation

Faculty of Biology, Leninskie gory 1–12, 119234 Moscow



M. V. Maslova
Lomonosov Moscow State University
Russian Federation

Faculty of Biology, Leninskie gory 1–12, 119234 Moscow



Ya. V. Krushinskaya
Lomonosov Moscow State University
Russian Federation

Faculty of Biology, Leninskie gory 1–12, 119234 Moscow



A. A. Guseva
Lomonosov Moscow State University
Russian Federation

Faculty of Biology, Leninskie gory 1–12, 119234 Moscow



N. A. Sokolova
Lomonosov Moscow State University
Russian Federation

Faculty of Biology, Leninskie gory 1–12, 119234 Moscow



References

1. Vaduganathan M., Mensah G., Turco J. The global burden of cardiovascular diseases and risk: a compass for future health. J. Am. Coll. Cardiol. 2022;80:2361–2371.

2. Giussani D., Davidge S.T. Developmental programming of cardiovascular disease by prenatal hypoxia. J. Dev. Orig. Health Dis. 2013;4(5):328–337.

3. Sutovska H., Babarikova K., Zeman M., Molcan L. Prenatal hypoxia affects foetal cardiovascular regulatory mechanisms in a sex – and circadian-dependent manner: a review. Int. J. Mol. Sci. 2022:23(5):2885.

4. Kwon E.J., Kim Y.J. What is fetal programming?: a lifetime health is under the control of in utero health. Obstet. Gynecol. Sci. 2017;60(6):506–519.

5. Koos B.J. Adenosine A2a receptors and O2 sensing in development. Am. J. Physiol. Regul., Integr. Comp. Physiol. 2011;301(3):R601–R622.

6. Hutter D., Kingdom J., Jaeggi E. Causes and mechanisms of intrauterine hypoxia and its impact on the fetal cardiovascular system: a review. Int. J. Pediatr. 2010:2010(1):401323.

7. Graf A., Trofimova L., Ksenofontov A., Baratova L., Bunik V. Hypoxic adaptation of mitochondrial metabolism in rat cerebellum decreases in pregnancy. Cells. 2020;9(1):139.

8. Maslova M.V., Graf A.V., Maklakova A.S., Krushinskaya Ya.V., Sokolova N.A., Koshelev V.B. Acute hypoxia during organogenesis affects cardiac autonomic balance in pregnant rats. Bull. Exp. Biol. Med. 2005;139(2):180–182.

9. Marcela S.G., Cristina R.M.M., Angel P.G.M., Manuel A.M., Sofía D.C., Patricia D.L.R.S., Bladimir R.R., Concepción S.G. Chronological and morphological study of heart development in the rat. Anat. Rec. 2012;295(8):1267–1290.

10. Itani N., Salinas C.E., Villena M., Skeffington K.L., Beck C., Villamor E., Blanco C.E., Giussani D.A. The highs and lows of programmed cardiovascular disease by developmental hypoxia: studies in the chicken embryo. J. Physiol. 2018;596(15):2991–3006.

11. Trofimova L., Lovat M., Groznaya A., Efimova E., Dunaeva T., Maslova M., Graf A., Bunik V. Behavioral impact of the regulation of the brain 2-oxoglutarate dehydrogenase complex by synthetic phosphonate analog of 2-oxoglutarate: Implications into the role of the complex in neurodegenerative diseases. Int. J. Alzheimers. Dis. 2010;2010(1):749061.

12. Baevsky R.М., Chernikova A.G. Heart rate variability analysis: physiological foundations and main methods. Cardiometry. 2017;(10):66–76.

13. Граф А., Маслова М., Маклакова А., Соколова Н., Кудряшова Н., Крушинская Я. Влияние гипоксии в период раннего органогенеза на деятельность сердца и норадренергический компонент регуляции в постнатальном периоде. Бюлл. эксп. биол. мед. 2006;142(11):484–486.

14. Graf A.V., Maslova M.V., Artiukhov A.V., Ksenofontov A.L., Aleshin V.A., Bunik V.I. Acute prenatal hypoxia in rats affects physiology and brain metabolism in the offspring, dependent on sex and gestational age. Int. J. Mol. Sci. 2022;23(5):2579.

15. Курьянова Е.В., Теплый Д.Л., Зеренинова Н.В. Становление регуляции хронотропной функции сердца в постнатальном онтогенезе белых крыс по данным спектрального анализа вариабельности. Бюлл. эксп. биол. мед. 2011;152(12):614–617.

16. Зефиров Т.Л., Святова Н.В. Возрастные особенности вагусной регуляции хронотропной функции сердца десимпатизированных и интактных крыс. Бюлл. эксп. биол. мед. 1997;123(6):703–705.

17. Чиглинцев В.М. Эффекты выключения симпатического шейного ганглия на показатели сердечной деятельности крыс. Вестн. Нижневарт. гос. ун-та. 2013;(3):16–21.

18. Vakhitov B.I., Vakhitov I.K., Volkov A.Kh., Chinkin S.S. Regulation mechanism of heartbeat rate, shocked blood volume, and their formation heterochronousity among small laboratory animals. Drug. Invention. Today. 2018;10(S3):3193–3196.

19. Ziyatdinova N.I., Sergeeva A.M., Dementieva R.E., Zefirov T.L. Peculiar effects of muscarinic M1, M2, and M3 receptor blockers on cardiac chronotropic function in neonatal rats. Bull. Exp. Biol. Med. 2012;154:1–2.

20. Hasan W. Autonomic cardiac innervation. Organogenesis. 2013;9(3):176–193.

21. Shepard T., Muffley L., Smith L. Ultrastructural study of mitochondria and their cristae in embryonic rats and primate (N. nemistrina). Anat. Rec. 1998;252(3):383–392.

22. Ellington S. In vitro analysis of glucose metabolism and embryonic growth in postimplantation rat embryos. Development. 1987;100(3):431–439.

23. Patterson A.J, Zhang L. Hypoxia and fetal heart development. Curr. Mol. Med. 2010;10(7):653–666.

24. Tintu A., Rouwet E., Verlohren S. et al. Hypoxia induces dilated cardiomyopathy in the chick embryo: Mechanism, intervention, and long-term consequences. PLoS. One. 2009;4(4):e5155.

25. Sessa F., Anna V., Messina G., Cibelli G., Monda V., Marsala G., Ruberto M., Biondi A., Cascio O., Bertozzi G., Pisanelli D., Maglietta F., Messina A., Mollica M.P., Salerno M. Heart rate variability as predictive factor for sudden cardiac death. Aging (Albany N.Y.). 2018;10(2):166–177.

26. Svitok P., Molcan L., Stebelova K., Vesela A., Sedlackova N., Ujhazy E., Mach M., Zeman M. Prenatal hypoxia in rats increased blood pressure and sympathetic drive of the adult offspring. Hypertens. Res. 2016;39(7):501–505.

27. Portbury A.L., Chandra R., Groelle M., McMillian M.K., Elias A., Herlong J.R., Rios M., Roffler-Tarlov S., Chikaraishi D.M. Catecholamines act via a β-adrenergic receptor to maintain fetal heart rate and survival. Am. J. Physiol. Heart. Circ. Physiol. 2003;284(6):Н2069–H2077.

28. Li G., Bae S., Zhang L. Effect of prenatal hypoxia on heat stress-mediated cardioprotection in adult rat heart. Am. J. Physiol. Heart. Circ. Physiol. 2004;286(5):H1712–H1719.


Review

For citations:


Graf A.V., Maklakova A.S., Maslova M.V., Krushinskaya Ya.V., Guseva A.A., Sokolova N.A. Рrenatal hypoxia of the period of early organogenesis influence on heart rate variability in rat pups during the first month of life. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2024;79(2):151-159. (In Russ.) https://doi.org/10.55959/MSU0137-0952-16-79-2-8

Views: 118


ISSN 0137-0952 (Print)