Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

Complex “simple nervous systems”

https://doi.org/10.55959/MSU0137-0952-16-79-2S-5

Abstract

Terrestrial gastropods have evolved new structures in the nervous system compared to marine and aquatic snails in order to adapt to their new habitat. The behavior of these animals is qualitatively different from the behavior of aquatic gastropods, includes not only the possibility of active interaction with other animals, but also the demonstration of interest by active approach, avoidance or escape in certain cases. The “arrow of love” used in copulation is unique to Nature. Almost all types of associative memory can be formed in these animals, consolidation and reconsolidation of memory can be demonstrated, and mechanisms of memory maintenance and modification can be analyzed. At the level of functionally identified neurons and neural clusters, it is possible to study associative processes in vitro, a 3-neural model of associative longterm changes in synaptic efficiency has been developed.

About the Authors

D. Yu. Afanasyeva
Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences
Russian Federation

Butlerova 5a, Moscow, 117485



P. M. Balaban
Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences
Russian Federation

Butlerova 5a, Moscow, 117485



References

1. Сахаров Д. А. Генеалогия нейронов. Москва: Наука; 1974. 183 с.

2. Chase R. Behavior and its neural control in gastropod mollusks. Oxford: Oxford Univ. Press; 2002. 336 pp.

3. Zakharov I.S., Hayes N.L., Ierusalimsky V.N., Nowakowski R.S., Balaban P.M. Postembryonic neuronogenesis in the procerebrum of the terrestrial snail, Helix L. J. Neurobiol. 1998;35(3):271–276.

4. Spallanzani L. Memorie su la respirazione, vol. 1, vol. 2. Milano: Annesio Nobili; 1803. 373 pp.

5. Satoshi W., Kirino Y., Gelperin A. Neural and molecular mechanisms of microcognition in Limax. Learn. Mem. 2008;15(9):633–642.

6. Balaban P.M., Vehovszky A., Maximova O.A., Zakharov I.S. Effect of 5,7-dihydroxytryptamine on the food-aversive conditioning in the snail Helix lucorum L. Brain. Res. 1987;404(1–2):201–210.

7. Adamo S. A., Chase R. The interactions of courtship, feeding, and locomotion in the behavioral hierarchy of the snail Helix aspersa. Behav. Neur. Biol. 1991;55(1):1–18.

8. Chase R. Brain cells that command sexual behavior in the snail Helix aspersa. J. Neurobiol. 1986;17(6):669–679.

9. Balaban P., Chase R. Stimulation of mesocerebrum in Helix aspersa inhibits the neural network underlying avoidance behavior. J. Compar. Physiol. A. 1990;166(3):421–427.

10. Willows A.O. Behavioral acts elicited by stimulation of single, identifiable brain cells. Science. 1967;157(3788):570–574.

11. Balaban P.M. System of command neurons in snail’s escape behavior. Acta Neurobiol. Exp. 1979;39(2):97–107.

12. Malyshev A.Y., Balaban P.M. Identification of mechanoafferent neurons in terrestrial snail: response properties and synaptic connections. J. Neurophysiol. 2002;87(5):2364–2371.

13. Balaban P.M., Bravarenko N.I., Maksimova O.A., Nikitin E., Ierusalimsky V.N., and Zakharov I.S. A single serotonergic modulatory cell can mediate reinforcement in the withdrawal network of the terrestrial snail. Neurobiol. Learn. Memory. 2001;75(1):30–50.

14. Balaban P.M. Cellular mechanisms of behavioral plasticity in terrestrial snail. Neurosci. Biobehav. Rev. 2002;26(5):597–630.

15. Никитин Е.С., Балабан П.М. Структурнофункциональная организация сети серотонинергических нейронов наземной улитки. Журн. высш. нервн. деят. им. И.П. Павлова. 2011;61(6):750–762.

16. Kupfermann I., Weiss K. The command neuron concept. Behav. Brain. Sci.1978;1(1):3–39.

17. Kupfermann I., Weiss K. Motor program selection in simple model systems. Current Opin. Neurobiol. 2001;11(6):673–677.

18. Vehovszky A.L., Elekes H., Balaban P. Serotonergic input on identified command neurons in Helix. Acta. Biol. Hungarica. 1993;44(1):97–101.

19. Zakharov I.S., Ierusalimsky V.N., Balaban P.M. Pedal serotonergic neurons modulate the synaptic input of withdrawal interneurons of Helix. Invertebrate Neurosci. 1995;1(1):41–52.

20. Hawkins R.D., Son H., Arancio O. Nitric oxide as a retrograde messenger during long-term potentiation in hippocampus. Progress Brain Res. 1998;118:155–172.

21. Colwill R.M., Absher R. A., Roberts M.L. Context-US learning in Aplysia Californica. J. Neurosci. 1988;8(12):4434–4439.

22. Balaban P., Bravarenko N. Long-term sensitization and environmental conditioning in terrestrial snails. Exp. Brain Res. 1993;96(3):487–493.

23. Sahley C.L., Martin K.A. Analysis of associative learning in the terrestrial mollusc Limax maximus. II. Appetitive learning. J. Comp. Physiol. A, Sens. Neur. Behav. Physiol. 1990;167(3):339–345.

24. Balaban P.M., Chase R. Self-stimulation in snails. Neurosci. Res. Com. 1989;4(3):139–143.

25. Gainutdinova T.H., Tagirova R.R, Ismailova A.I., Muranova L.N., Samarova E.I., Gainutdinov K.L., Balaban P.M. Reconsolidation of a context long-term memory in the terrestrial snail requires protein synthesis. Learn. Mem. 2005;12(6):620–625.

26. Balaban P., Chase R. Interrelationships of the emotionally positive and negative regions of the brain of the edible snail. Neurosci. Behav. Physiol. 1991;21(2):172–180.

27. Balaban P. Behavioral neurobiology of learning in terrestrial snails. Progress Neurobiol. 1993;41(1):1–19.

28. Иерусалимский В.H., Захаров И.С., Балабан П.М. Сравнение серотонин-и дофаминергической нейронных систем у половозрелых и ювенильных наземных моллюсков Helix и Eobania. Журн. высш. нервн. деят. им. И.П. Павлова. 1997;47(3):563–576.

29. Balaban P.M., Korshunova T.A., Bravarenko N.I. Postsynaptic calcium contributes to reinforcement in a three-neuron network exhibiting associative plasticity. Eur. J. Neurosci. 2004;19(2):227–233.

30. Glanzman D.L., Mackey S.L., Hawkins R.D., Dyke A.M., Lloyd P.E., Kandel E.R. Depletion of serotonin in the nervous system of aplysia reduces the behavioral enhancement of gill withdrawal as well as the heterosynaptic facilitation produced by Tail Shock. J. Neurosci. 1989;9(12):4200–4213.

31. Hammer M., Menzel R. Learning and memory in the honeybee. J. Neurosci. 1995;15(3 Pt. 1):1617–1630.

32. Balaban P.M., Vinarskaya A.K., Zuzina A.B., Ierusalimsky V.N., A. Y. Malyshev A.Y. Impairment of the serotonergic neurons underlying reinforcement elicits extinction of the repeatedly reactivated context memory. Sci. Rep. 2016;6(1):36933.


Review

For citations:


Afanasyeva D.Yu., Balaban P.M. Complex “simple nervous systems”. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2024;79(2S):37-45. (In Russ.) https://doi.org/10.55959/MSU0137-0952-16-79-2S-5

Views: 175


ISSN 0137-0952 (Print)