Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

Osmoregulation and reproduction: evolutionary trends in prolactin functions from fish to mammals

https://doi.org/10.55959/MSU0137-0952-16-79-2S-10

Abstract

The study of prolactin function evolution provides key insights into the diverse effects of this hormone in mammals, both in health and disease, which is relevant from both theoretical and practical perspectives. This article reviews both original and literature data concerning the role of prolactin and its receptors in regulating the sexual dimorphism of freshwater adaptation in the three-spined stickleback Gasterosteus aculeatus L. It is demonstrated that mRNA expression of prolactin gene 1 (one of two prolactin paralogs) and its receptor PRLRA increases in the brains of female sticklebacks only upon transitioning to freshwater. The brain and kidneys of sticklebacks, as androgen-dependent organs, exhibit sex-dependent expression of Prlra in seawater. It is suggested that sex-dependent osmoregulatory effects of prolactin are mediated through the PRLRA receptor in these organs. The PRLRB receptor, expressed in the kidneys and brains of sticklebacks regardless of sex in seawater, shows increased sensitivity to reduced salinity, suggesting a more active role in implementing sex-independent osmoregulatory functions of prolactin. Gills and intestines, as osmoregulatory organs, express the PRLRA and PRLRB receptors independent of sex in both seawater and freshwater. With freshwater adaptation, there is a concurrent increase in the expression of Prl1 in the brains of females and the expression of Atp1a1 (α1a subunit of Na+/K+-ATPase), Nhe3 (NHE3 sodium-proton antiport gene), and Ecac (epithelial calcium channel gene) in their gills. It is presumed that these gill genes are under positive control by prolactin. Exploring the potential for prolactin’s osmoregulatory function in mammals revealed that it may manifest in conditions such as pathologies accompanied by increased expression of prolactin receptor isoforms in osmoregulatory organs. One of such pathologies is cholestasis in female rats, which was associated with an increase in Prlr isoform expression and changes in activity and ratio of Na+/K+-ATPase subunits in the kidney. Thus, it is concluded that in fish, the osmoregulatory function of prolactin is sex-dependent, while in mammals, it may manifest under conditions of disrupted water-salt exchange.

About the Authors

O. V. Smirnova
Lomonosov Moscow State University
Russian Federation

Department of Human and Animal Physiology, Faculty of Biology, 

Leninskie Gory, 1–12, Moscow, 119234



P. A. Abramicheva
Lomonosov Moscow State University
Russian Federation

Belozersky Institute of Physical and Chemical Biology,

Leninskie Gory, 1–40, Moscow, 119991



N. S. Pavlova
Lomonosov Moscow State University
Russian Federation

Department of Human and Animal Physiology, Faculty of Biology, 

Leninskie Gory, 1–12, Moscow, 119234



References

1. Breves J.P., McCormick S.D., Karlstrom R.O. Prolactin and teleost ionocytes: new insights into cellular and molecular targets of prolactin in vertebrate epithelia. Gen. Comp. Endocrinol. 2014;203:21–28.

2. Seale A.P., Pavlosky K.K., Celino-Brady F.T., Yamaguchi Y., Breves J.P., Lerner D.T. Systemic versus tissue-level prolactin signaling in a teleost during a tidal cycle. J. Comp. Physiol. B. 2019;189(5):581–594.

3. Breves J.P., Watanabe S., Kaneko T., Hirano T., Grau E.G. Prolactin restores branchial mitochondrion-rich cells expressing Na+/Cl- cotransporter in hypophysectomized Mozambique tilapia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010;299(2):R702–R710.

4. Manzon L.A. The role of prolactin in fish osmoregulation: A review. Gen. Comp. Endocrinol. 2002;125(2):291–310.

5. Power D.M. Developmental ontogeny of prolactin and its receptor in fish. Gen. Comp. Endocrinol. 2005;142(1–2):25–33.

6. Breves J.P., Seale A.P., Helms R.E., Tipsmark C.K., Hirano T., Grau E.G. Dynamic gene expression of GH/ PRL-family hormone receptors in gill and kidney during freshwater-acclimation of Mozambique tilapia. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2011;158(2):194–200.

7. Lee K.M., Kaneko T., Aida K. Prolactin and prolactin receptor expressions in a marine teleost, pufferfish Takifugu rubripes. Gen. Comp. Endocrinol. 2006;146(3):318–328.

8. Pavlova N.S., Gizatulina A.R., Neretina T.V., Smirnova O.V. Expression of opsin genes in the retina of female and male three-spined sticklebacks Gasterosteus aculeatus L.: Effect of freshwater adaptation and prolactin administration. Biochemistry (Mosc.). 2022;87(3):215–224.

9. Pavlova N.S., Neretina T.V., Smirnova O.V. Dynamics of prolactin axis genes in the brain of male and female three-spined stickleback Gasterosteus aculeatus (Gasterostaidae) during short-term freshwater adaptation. J. Ichthyol. 2020;60(2):299–304.

10. Павлова Н.С., Гизатулина А.Р., Неретина Т.В., Смирнова О.В. Пролактин адаптирует цветовое зрение у самок и самцов трехиглой колюшки Gasterosteus aculeatus L. при 72-часовой адаптации к пресной воде. Труды X Международной научно-практической конференции «Морские исследования и образование (MARESEDU-2021)», том III. Тверь: ООО «ПолиПРЕСС»; 2021:69–75.

11. Henderson H.L., Hodson D.J., Gregory S.J., Townsend J., Tortonese D.J. Gonadotropin-releasing hormone stimulates prolactin release from lactotrophs in photoperiodic species through a gonadotropin-independent mechanism. Biol. Reprod. 2008;78(2):370–377.

12. Onuma T., Ando H., Koide N., Okada H., Urano A. Effects of salmon GnRH and sex steroid hormones on expression of genes encoding growth hormone/prolactin/somatolactin family hormones and a pituitary-specific transcription factor in masu salmon pituitary cells in vitro. Gen. Comp. Endocrinol. 2005;143(2):129–141.

13. Павлова Н.С., Неретина Т.В., Смирнова О.В. Экспрессия пролактина и его рецепторов в мозге самок трехиглой колюшки Gasterosteus aculeatus в условия смены солености воды. Сборник избранных статей X и XI международных научно-практических конференций «Высокие технологии, фундаментальные и прикладные исследования в физиологии и медицине». СПб.: Изд-во Политех. ун-та; 2016:121–125.

14. Павлова Н.С., Неретина Т.В., Смирнова О.В. Динамика экспрессии генов пролактина в мозге самок и самцов трехиглой колюшки Gasterosteus aculeatus при 24-часовой пресноводной адаптации. Научные труды II Объединенного научного форума (VI съезд физиологов СНГ, VI съезд биохимиков России, IX российский симпозиум «Белки и пептиды»). М.: Перо; 2019:191

15. Greytak S.R., Tarrant A.M., Nacci D., Hahn M.E., Callard G.V. Estrogen responses in killifish (Fundulus heteroclitus) from polluted and unpolluted environments are site-and gene-specific. Aquat. Toxicol. 2010;99(2):291–299.

16. Lee Pow C.S.D., Yost E.E., Aday D.D., Kullman S.W. Sharing the roles: An assessment of Japanese medaka estrogen receptors in vitellogenin induction. Environ. Sci. Technol. 2016;50(16):8886–8895.

17. Zheng W., Xu H., Lam S.H., Luo H., Karuturi R.K.M., Gong Z. Transcriptomic analyses of sexual dimorphism of the zebrafish liver and the effect of sex hormones. PLoS One. 2013;8(1):e53562.

18. Seale A.P., Malintha G.H.T., Celino-Brady F.T., Head T., Belcaid M., Yamaguchi Y., Lerner D.T., Baltzegar D.A., Borski R.J., Stoytcheva Z.R., Breves J.P. Transcriptional regulation of prolactin in a euryhaline teleost: Characterisation of gene promoters through in silico and transcriptome analyses. J. Neuroendocrinol. 2020;32(11):e12905.

19. Liu N.-A., Liu Q., Wawrowsky K., Yang Z., Lin S., Melmed S. Prolactin receptor signaling mediates the osmotic response of embryonic zebrafish lactotrophs. Mol. Endocrinol. 2006;20(4):871–880.

20. Seale A.P., Mita M., Hirano T., Grau E.G. Involvement of the cAMP messenger system and extracellular Ca2+ during hyposmotically-induced prolactin release in the Mozambique tilapia. Gen. Comp. Endocrinol. 2011;170(2):401–407.

21. Watanabe S., Hirano T., Grau E.G., Kaneko T. Osmosensitivity of prolactin cells is enhanced by the water channel aquaporin-3 in a euryhaline Mozambique tilapia (Oreochromis mossambicus). Am. J. Physiol. Integr. Comp. Physiol. 2009;296(2):R446–R453.

22. Hoffmann E., Walstad A., Karlsson J., Olsson P.-E., Borg B. Androgen receptor-beta mRNA levels in different tissues in breeding and post-breeding male and female sticklebacks, Gasterosteus aculeatus. Reprod. Biol. Endocrinol. 2012;10:23.

23. Dobolyi A., Oláh S., Keller D., Kumari R., Fazekas E.A., Csikós V., Renner É., Cservenák M. Secretion and function of pituitary prolactin in evolutionary perspective. Front. Neurosci. 2020;14:621.

24. Павлова Н.С., Неретина Т.В., Смирнова О.В. Динамика экспрессии генов пролактина и его рецепторов в мозге самок трехиглой колюшки Gasterosteus aculeatus при 24-часовой пресноводной адаптации. Третья молодежная школа-конференция «Молекулярные механизмы регуляции физиологических функций». М.: Изд-во «Наука»; 2019.

25. Hoffmann E., Walstad A., Karlsson J., Olsson P.-E., Borg B. Androgen receptor-beta mRNA levels in different tissues in breeding and post-breeding male and female sticklebacks, Gasterosteus aculeatus. Reprod. Biol. Endocrinol. 2012;10:23.

26. Olsson P.-E., Berg A.H., von Hofsten J., Grahn B., Hellqvist A., Larsson A., Karlsson J., Modig C., Borg B., Thomas P. Molecular cloning and characterization of a nuclear androgen receptor activated by 11-ketotestosterone. Reprod. Biol. Endocrinol. 2005;3:37.

27. Jolly C., Katsiadaki I., Le Belle N., Mayer I., Dufour S. Development of a stickleback kidney cell culture assay for the screening of androgenic and anti-androgenic endocrine disruptors. Aquat. Toxicol. 2006;79(2):158–166.

28. Seale L.A., Gilman C.L., Zavacki A.M., Larsen P.R., Inokuchi M., Breves J.P., Seale A.P. Regulation of thyroid hormones and branchial iodothyronine deiodinases during freshwater acclimation in tilapia. Mol. Cell Endocrinol. 2021;538:111450.

29. Culbert B.M., Regish A.M., Hall D.J., McCormick S.D., Bernier N.J. Neuroendocrine regulation of plasma cortisol levels during smoltification and seawater acclimation of Atlantic salmon. Front. Endocrinol. (Lausanne). 2022;13:859817.

30. Nagarajan G., Aruna A., Chang Y.-M., Alkhamis Y.A., Mathew R.T., Chang C.-F. Effects of osmotic stress on the mRNA expression of prl, prlr, gr, gh, and ghr in the pituitary and osmoregulatory organs of black porgy, Acanthopagrus schlegelii. Int. J. Mol. Sci. 2023;24(6):5318.

31. Inokuchi M., Breves J.P., Moriyama S., Watanabe S., Kaneko T., Lerner D.T., et al. Prolactin 177, prolactin 188, and extracellular osmolality independently regulate the gene expression of ion transport effectors in gill of Mozambique tilapia. Am. J. Physiol. Integr. Comp. Physiol. 2015;309(10):R1251–R1263.

32. Yuan M., Jia Q., Wang T., Lu Q., Tang L., Wang Y., Lu W. Dynamic responses of prolactin, growth hormone and their receptors to hyposmotic acclimation in the olive flounder Paralichthys olivaceus. Gen. Comp. Endocrinol. 2017;254:8–13.

33. Павлова Н.С., Неретина Т.В., Смирнова О.В. Зависимость от пола экспрессии гена пролактина в мозге и генов Na+/K+-АТФазы в жабрах трехиглой колюшки Gasterosteus aculeatus L. при пресноводной адаптации. Труды XII Международной научно-практической конференции «Морские исследования и образование (MARESEDU-2023)». Тверь: ООО «ПолиПРЕСС»; 2024:3.

34. Kang C.-K., Tsai S.-C., Lee T.-H., Hwang P.-P. Differential expression of branchial Na+/K+-ATPase of two medaka species, Oryzias latipes and Oryzias dancena, with different salinity tolerances acclimated to fresh water, brackish water and seawater. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2008;151(4):566–575.

35. Mundy P.C., Jeffries K.M., Fangue N.A., Connon R.E. Differential regulation of select osmoregulatory genes and Na+/K+-ATPase paralogs may contribute to population differences in salinity tolerance in a semi-anadromous fish. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2020;240:110584.

36. Esbaugh A.J., Brix K.V., Grosell M. Na+/K+-ATPase isoform switching in zebrafish during transition to dilute freshwater habitats. Proc. R. Soc. B. 2019;286(1903):20190630.

37. Wang X., Hill D., Tillitt D.E., Bhandari R.K. Bisphenol A and 17-α-ethinylestradiol-induced transgenerational differences in expression of osmoregulatory genes in the gill of medaka (Oryzias latipes). Aquat. Toxicol. 2019;211:227–234.

38. Hu Y.-C., Chu K.-F., Yang W.-K., Lee T.-H. Na+, K+-ATPase β1 subunit associates with α1 subunit modulating a “higher-NKA-in-hyposmotic media” response in gills of euryhaline milkfish, Chanos chanos. J. Comp. Physiol. B. 2017;187(7):995–1007.

39. Esbaugh A.J., Cutler B. Intestinal Na+, K+, 2Clcotransporter 2 plays a crucial role in hyperosmotic transitions of a euryhaline teleost. Physiol. Rep. 2016;4(22):e13028.

40. Inokuchi M., Hiroi J., Watanabe S., Lee K.M., Kaneko T. Gene expression and morphological localization of NHE3, NCC and NKCC1a in branchial mitochondriarich cells of Mozambique tilapia (Oreochromis mossambicus) acclimated to a wide range of salinities. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2008;151(2):151–158.

41. Cutler C.P., Cramb G. Two isoforms of the Na+/ K+/2Cl- cotransporter are expressed in the European eel (Anguilla anguilla). Biochim. Biophys. Acta (BBA)- Biomembranes. 2002;1566(1–2):92–103.

42. Павлова Н.С., Неретина Т.В., Смирнова О.В. Экспрессия генов Na+/K+/Cl- и Na+/H+-транспортеров в жабрах трехиглой колюшки: связь с полом и пресноводной адаптацией. Четвертая молодежная школа-конференция «Молекулярные механизмы регуляции физиологических функций»: Сборник материалов. М.: Изд-во Наука; 2023:80–81.

43. Madsen S.S., Weber C., Nielsen A.M., Mohiseni M., Bosssus M.C., Tipsmark C.K., Borg B. Sexual maturation and changes in water and salt transport components in the kidney and intestine of three-spined stickleback (Gasterosteus aculeatus L.). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2015;188:107–119.

44. Cutler C.P., Cramb G. Differential expression of absorptive cation-chloride-cotransporters in the intestinal and renal tissues of the European eel (Anguilla anguilla). Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2008;149(1):63–73.

45. Liu S.-T., Horng J.-L., Lin L.-Y. Role of the basolateral Na+/H+ exchanger-2 (NHE2) in ionocytes of seawater-acclimated medaka (Oryzias latipes). Front. Physiol. 2022;13:870967.

46. Guh Y.-J., Lin C.-H., Hwang P.-P. Osmoregulation in zebrafish: ion transport mechanisms and functional regulation. Excli J. 2015;14:627–659.

47. Jeng Y.-J., Kochukov M., Watson C.S. Combinations of physiologic estrogens with xenoestrogens alter calcium and kinase responses, prolactin release, and membrane estrogen receptor trafficking in rat pituitary cells. Environ. Heal. 2010;9:61.

48. Amenyogbe E., Chen G., Wang Z., Lu X., Lin M., Lin A.Y. A review on sex steroid hormone estrogen receptors in mammals and fish. Int. J. Endocrinol. 2020;2020:5386193.

49. Takvam M., Wood C.M., Kryvi H., Nilsen T.O. Ion transporters and osmoregulation in the kidney of teleost fishes as a function of salinity. Front. Physiol. 2021;12:664588.

50. Dauder S., Young G., Bern H.A. Effect of hypophysectomy, replacement therapy with ovine prolactin, and cortisol and triiodothyronine treatment on prolactin receptors of the tilapia (Oreochromis mossambicus). Gen. Comp. Endocrinol. 1990;77(3):378–385.

51. Ibarra F., Crambert S., Eklöf A.-C., Lundquist A., Hansell P., Holtbäck U. Prolactin, a natriuretic hormone, interacting with the renal dopamine system. Kidney Int. 2005;68(4):1700–1707.

52. Смирнова О.В. Осморегуляторная функция пролактина у рыб и ее проекция на млекопитающих. Усп. физиол. наук. 2011;42(4):59–75.

53. Aleksandrova M.I., Kushnareva N.S., Smirnova O.V. Prolactine receptor expression in kidney tissue of female rats with cholestasis: the effect of hyperprolactinemia. Bull. Exp. Biol. Med. 2012;153(4):448–451.

54. Abramicheva P.A., Balakina T.A., Morozov I.A., Schelkunova T.A., Smirnova O.V. Prolactin signaling pathways determining its direct effects on kidneys in the cholestasis of pregnancy model. Biochemistry (Mosc.). 2019;84(10):1204–1212.

55. Fidchenko Y.M., Kushnareva N.S., Smirnova O.V. Effect of prolactin on the water-salt balance in rat females in the model of cholestasis of pregnancy. Bull. Exp. Biol. Med. 2014;156(6):803–806.

56. Abramicheva P.A., Smirnova O.V. Prolactin receptor isoforms as the basis of tissue-specific action of prolactin in the norm and pathology. Biochemistry (Mosc.). 2019;84(4):329–345.

57. Abramicheva P.A., Balakina T.A., Bulaeva O.A., Guseva A.A., Lopina O.D., Smirnova O.V. Role of Na+/K+-ATPase in natriuretic effect of prolactin in a model of cholestasis of pregnancy. Biochemistry (Mosc.). 2017;82(5):632–641.


Review

For citations:


Smirnova O.V., Abramicheva P.A., Pavlova N.S. Osmoregulation and reproduction: evolutionary trends in prolactin functions from fish to mammals. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2024;79(2S):46-54. (In Russ.) https://doi.org/10.55959/MSU0137-0952-16-79-2S-10

Views: 91


ISSN 0137-0952 (Print)