New strains of the genus Vischeria (Eustigmatophyceae, Heterokontophyta): composition of fatty acids and their possible use as dietary supplements for animals and humans
https://doi.org/10.55959/MSU0137-0952-16-79-3-3
Abstract
In recent years, amid an increasing shortage of resources, there has been a steady trend towards the search for new biotechnologically valuable algae strains. This paper presents the results of a study of the taxonomic position, growth characteristics and analysis of the fatty acid profile of two strains of eustigmatophyte microalgae of the genus Vischeria (Heterokontophyta) isolated from the Nadymsky district of the Yamalo-Nenets Autonomous Okrug (Russia) in order to clarify their biotechnological potential. According to the results of morphological and phylogenetic analysis using internal transcribed spacer 2 (ITS2), the strains were identified as Vischeria sp. In the work, the growth rates of the studied strains were studied in detail, productivity was assessed, the content of total lipids was determined and the fatty acid composition was studied. It has been shown that both are active producers of palmitic, eicosapentaenoic and palmitoleic acids. It is noteworthy that in terms of the content of palmitoleic acid, both strains studied are superior to its traditional sources. In the strains VKM Al-463 and VKM Al-480, the final concentration of palmitic acid was 419,6 ± 18,1 mg/l and 501,3 ± 57,0 mg/l, palmitoleic acid – 896,5 ± 22,5 mg/l and 1312,5 ± 109,0 mg/l, eicosapentaenoic acid – 109,0 ± 7,5 mg/l and 113,7 ± 8,8 mg/l, respectively. During the comparative analysis, it was found that although both strains had undoubted biotechnological value, it was the VKM Al-480 strain that most effectively accumulated biomass enriched with these acids. This makes it attractive as an alternative source of raw materials for the production of food and feed additives, cosmetics and biodiesel.
Keywords
About the Authors
E. S. KrivinaRussian Federation
Nauka Prospect 5, Pushchino, 142290
M. A. Sinetova
Russian Federation
Botanicheskaya st. 35, Moscow
V. V. Red’kina
Russian Federation
Nauka Prospect 5, Pushchino, 142290
A. V. Soromotin
Russian Federation
Volodarsky st. 6, Tyumen, 625003
Н. Жеребятьева
Russian Federation
Volodarsky st. 6, Tyumen, 625003
A. D. Temraleeva
Russian Federation
Nauka Prospect 5, Pushchino, 142290
References
1. Blasio M., Balzano S. Fatty acids derivatives from eukaryotic microalgae, pathways and potential applications. Front. Microbiol. 2021;12:718933.
2. Maltsev Y., Maltseva K. Fatty acids of microalgae: diversity and applications. Rev. Environ. Sci. Biotechnol. 2021;20(2):515–547.
3. Gao B., Xia S., Lei X., Zhang C. Combined effects of different nitrogen sources and levels and light intensities on growth and fatty acid and lipid production of oleaginous eustigmatophycean microalga Eustigmatos cf. polyphem. J. Appl. Phycol. 2018;30(1):215–229.
4. Sinetova M.A., Sidorov R.A., Starikov A.Y., Voronkov A.S., Medvedeva A.S., Krivova Z.V., Pakholkova M.S., Bachin D.V., Bedbenov V.S., Gabrielyan D.A., Zayadan B.K., Bolatkhan K., Los D.A. Assessment of biotechnological potential of cyanobacteria and microalgae strains from the IPPAS culture collection. Appl. Biochem. Microbiol. 2020;56(7):794–808.
5. Sidorov R.A., Starikov A.Y., Sinetova M.A., Guilmisarian E.V., Los D.A. Identification of conjugated dienes of fatty acids in Vischeria sp. IPPAS C-70 under oxidative stress. Int. J. Mol. Sci. 2024;25(6):323.
6. Lenihan-Geels G., Bishop K., Ferguson L. Alternative sources of omega-3 fats: can we find a sustainable substitute for fish? Nutrients 2013;5(4):1301.
7. Coniglio S., Shumskaya M., Vassiliou E. Unsaturated fatty acids and their immunomodulatory properties. Biology. 2023;12(2):279.
8. Jack A., Adegbeye M., Ekanem D., Faniyi T., Fajemisin A.N., Elghandour M.M., Salem A.Z.M., Rivas-Caceres R.R., Adewumi K., Edoh O. Microalgae application in feed for ruminants. Handbook of Food and Feed from Microalgae. Eds. E. Jacob-Lopez, M.I. Queiroz, M.M. Maroneze, and L.Q. Zepka. Academic Press; 2023:397–409.
9. De Souza J., Lock A.L. Milk production and nutrient digestibility responses to triglyceride or fatty acid supplements enriched in palmitic acid. J. Dairy Sci. 2019;102(5):4155–4164.
10. Staples C.R., Burke J.M., Thatcher W.W. Influence of supplemental fats on reproductive tissues and performance of lactating cows. J. Dairy. Sci. 1998;81(3):856–871.
11. Kholif A.E., Gouda A.G., Hatem A.H. Performance and milk composition of nubian goats as affected by increasing level of Nannochloropsis oculata microalgae. Animals. 2020;10(12):2453.
12. Wu Y., Li R., Hildebrand D.F. Biosynthesis and metabolic engineering of palmitoleate production, an important contributor to human health and sustainable industry. Prog. Lipid Res. 2012;51(4):340–349.
13. Kolouchová I., Sigler K., Schreiberová O., Masák J., Řezanka T. New yeast-based approaches in production of palmitoleic acid. Bioresour. 2015;192:726–734.
14. Okullo A.A., Temu A.K., Ogwok P., Ntalikwa J.W. Physico-chemical properties of biodiesel from jatropha and castor oils. Int. J. Renew. Energy Res. 2012;2(1):47–52.
15. Shinde S., Kale A., Kulaga T., Licamele J.D., Tonkovich A.L. Omega 7 rich compositions and methods of isolating omega 7 fatty acids. US20130129775 A1. 2013.
16. Yang B.R., Kallio H.P. Fatty acid composition of lipids in sea buckthorn (Hippophae rhamnoides L.) berries of different origins. J. Agric. Food. Chem. 2001;49(4):1939–1947.
17. Knothe G. Biodiesel derived from a model oil enriched in palmitoleic acid macadamia nut oil. Energy Fuels. 2010;24(3):2098–2103.
18. Abdelhamid A.S., Brown T.J., Brainard J.S., Biswas P., Thorpe G.C., Moore H.J., Deane K.H., AlAbdulghafoor F.K., Summerbell C.D., Worthington H.V., Song F., Hooper L. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2018;7(7):CD003177.
19. Forbes S.C., Holroyd-Leduc J.M., Poulin M.J., Hogan D.B. Effect of тutrients, вietary ыupplements and мitamins on сognition: a systematic review and metaanalysis of randomized controlled trials. Can. Geriatr. J. 2015;18(4):231–245.
20. Alex A., Abbott K.A., McEvoy M., Schofield P.W., Garg M.L. Long-chain omega-3 polyunsaturated fatty acids and cognitive decline in non-demented adults: a systematic review and meta-analysis. Nutr. Rev. 2020;78(7):563–578.
21. Lands B. A critique of paradoxes in current advice on dietary lipids. Prog. Lipid Res. 2008;47(2):77–106.
22. Зайцева Л.В., Нечаев А.П. Полиненасыщенные жирные кислоты в питании: современный взгляд. Пищевая промышленность. 2014;4:14–19.
23. Krivina E., Portnov A., Temraleeva A. A description of Aliichlorella ignota gen. et sp. nov. and a comparison of the efficiency of species delimitation methods in the Chlorella-clade (Trebouxiophyceae, Chlorophyta). Phycol. Res. 2024;72(3):180–190.
24. Procházková K. Diverzita a druhový koncept u komplexu Vischeria/Eustigmatos (Eustigmatophyceae). Praha: Karlova univerzita; 2012. 79 pp.
25. Темралеева А.Д., Портная Е.А. Морфологический и молекулярно-генетический анализ рода Vischeria (Eustigmataceae, Ochrophyta) в альгологической коллекции ACSSI. Бот. журн. 2022;107(2):132–148.
26. Kryvenda A., Rybalka N., Wolf M., Friedl T. Species distinctions among closely related strains of Eustigmatophyceae (Stramenopiles) emphasizing ITS2 sequence-structure data: Eustigmatos and Vischeria. Eur. J. Phycol. 2018;53(4):471–491.
27. Xu J., Li T., Li C.L., Zhu S.N., Wang Z.M., Zeng E.Y. Lipid accumulation and eicosapentaenoic acid distribution in response to nitrogen limitation in microalga Eustigmatos vischeri JHsu-01 (Eustigmatophyceae). Algal Res. 2020;48:101910.
28. Wang F., Gao B., Huang L., Su M., Dai C., Zhang C. Evaluation of oleaginous eustigmatophycean microalgae as potential biorefinery feedstock for the production of palmitoleic acid and biodiesel. Bioresour Technol. 2018;270:30–37.
29. Sinetova M.A., Sidorov R.A., Medvedeva A.A., Starikov A.Y., Markelova A.G., Allakhverdiev S.I., Los D.A. Effect of salt stress on physiological parameters of microalgae Vischeria punctata strain IPPAS H-242, a superproducer of eicosapentaenoic acid. J. Biotechnol. 2021;331:63–73.
30. Gao B., Yang J., Lei X., Xia S., Li A., Zhang C. Characterization of cell structural change, growth, lipid accumulation, and pigment profile of a novel oleaginous microalga, Vischeria stellata (Eustigmatophyceae), cultured with different initial nitrate supplies. J. Appl. Phycol. 2016;28(2):821–830.
31. Krzemińska I., Nosalewicz A., Reszczyńska E., Pawlik-Skowrońska B. Enhanced light-induced biosynthesis of fatty acids suitable for biodiesel production by the yellowgreen alga Eustigmatos magnus. Energies. 2020;13(22):6098.
32. Kaijser A., Dutta P.C., Savage. G.P. Oxidative stability and lipid composition of macadamia nuts grown in New Zealand. Food Chem. 2020;71(1):67–70.
Review
For citations:
Krivina E.S., Sinetova M.A., Red’kina V.V., Soromotin A.V., , Temraleeva A.D. New strains of the genus Vischeria (Eustigmatophyceae, Heterokontophyta): composition of fatty acids and their possible use as dietary supplements for animals and humans. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2024;79(3):193-201. (In Russ.) https://doi.org/10.55959/MSU0137-0952-16-79-3-3