Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

Urban dust nanoparticles induce proinflammatory activation of neutrophils and macrophages

https://doi.org/10.55959/MSU0137-0952-16-79-3-5

Abstract

Urban dust particles are a major pathogenic factor in respiratory diseases such as asthma and chronic obstructive pulmonary disease, and also increase the risk of cardiovascular disease and lung cancer. Nanoparticles (NPs) of various origins are an important component of urban dust, but their effects on the human body are barely studied. In the present work, the effect of urban dust NPs on innate immune cells, neutrophils and macrophages was investigated in vitro. Urban dust nanoparticles were isolated from urban dust samples using coiled tube field-flow fractionation technique. Urban dust NPs were shown to induce a slight increase in the production of reactive oxygen species in human neutrophils. Preincubation of neutrophils with dust NPs resulted in a significant increase in ROS production in response to the chemoattractant peptide N-formylmethionine-leucyl-phenylalanine (fMLP). This suggests an effect of neutrophil priming with nanoparticles. On macrophages differentiated from the monocytic line THP-1, urban dust NPs stimulated the secretion of pro-inflammatory cytokines, tumor necrosis factor, and interleukin-6. The inflammatory activation of neutrophils and macrophages was reduced by antibiotic polymyxin B, which is able to bind bacterial wall lipopolysaccharide. The results suggest that the pro-inflammatory effect of urban dust NPs on neutrophils and macrophages is, at least in part, due to the presence of LPS.

About the Authors

A. N. Pavlyuchenkova
A.N. Belozersky Institute of Physico-Сhemical Biology, Lomonosov Moscow State University ; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University ; Evolutionary Cytogerontology Sector and Immunology, School of Biology, Lomonosov Moscow State University
Russian Federation

Leninskie Gory 1–40, Moscow, 119992 

Leninskie Gory 1-73, Moscow, 119234 

Leninskie Gory 1–12, Moscow, 119234 



N. V. Vorobyeva
Department of Immunology, School of Biology, Lomonosov Moscow State University
Russian Federation

Leninskie Gory 1–12, Moscow, 119234 



A. A. Dashkevich
A.N. Belozersky Institute of Physico-Сhemical Biology, Lomonosov Moscow State University ; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University
Russian Federation

Leninskie Gory 1–40, Moscow, 119992 

Leninskie Gory 1-73, Moscow, 119234 



L. A. Zinovkina
A.N. Belozersky Institute of Physico-Сhemical Biology, Lomonosov Moscow State University ; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University
Russian Federation

Leninskie Gory 1–40, Moscow, 119992 

Leninskie Gory 1-73, Moscow, 119234 



A. I. Ivaneev
Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences
Russian Federation

Kosygina 19, Moscow, 119334 



M. S. Ermolin
Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences
Russian Federation

Kosygina 19, Moscow, 119334 



P. S. Fedotov
A.N. Belozersky Institute of Physico-Сhemical Biology, Lomonosov Moscow State University ; Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences
Russian Federation

Leninskie Gory 1–40, Moscow, 119992 

Kosygina 19, Moscow, 119334 



R. A. Zinovkin
A.N. Belozersky Institute of Physico-Сhemical Biology, Lomonosov Moscow State University
Russian Federation

Leninskie Gory 1–40, Moscow, 119992 



M. A. Chelombitko
A.N. Belozersky Institute of Physico-Сhemical Biology, Lomonosov Moscow State University
Russian Federation

Leninskie Gory 1–40, Moscow, 119992 



B. V. Chernyak
A.N. Belozersky Institute of Physico-Сhemical Biology, Lomonosov Moscow State University
Russian Federation

Leninskie Gory 1–40, Moscow, 119992 



References

1. Giere R., Querol X. Solid particulate matter in the atmosphere. Elements. 2010;6(4):215–222.

2. Haynes H.M., Taylor K.G., Rothwell J., Byrne P. Characterisation of road-dust sediment in urban systems: a review of a global challenge. J. Soils Sediments. 2020;20(12):4194–4217.

3. Loomis D., Grosse Y., Lauby-Secretan B., El Ghissassi F., Bouvard V., Benbrahim-Tallaa L., Guha N., Baan R., Mattock H., Straif K. The carcinogenicity of outdoor air pollution. Lancet Oncol. 2013;14(13):1262–1263.

4. Ревич Б.А. Мелкодисперсные взвешенные частицы в атмосферном воздухе и их воздействие на здоровье жителей мегаполисов. Проблемы экологического мониторинга и моделирования экосистем. 2018;29(3):53–78.

5. Hu X., Zhang Y., Luo J., Wang T., Lian H., Ding Z. Bioaccessibility and health risk of arsenic, mercury and other metals in urban street dusts from a mega-city, Nanjing, China. Environ. Pollut. 2011;159(5):1215–1221.

6. Albanese A., Tang P.S., Chan W.C. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 2012;14(1):1–16.

7. Saffari A., Daher N., Shafer M.M., Schauer J.J., Sioutas C. Seasonal and spatial variation of trace elements and metals in quasi-ultrafine (PM0.25) particles in the Los Angeles metropolitan area and characterization of their sources. Environ. Pollut. 2013;181:14–23.

8. Deng J., Zhang Y., Qiu Y., Zhang H., Du W., Xu L., Hong Y., Chen Y., Chen J. Source apportionment of PM2.5 at the Lin’an regional background site in China with three receptor models. Atmos. Res. 2018;202:23–32.

9. Dietrich M., O’Shea M.J., Gieré R., Krekeler M.P.S. Road sediment, an underutilized material in environmental science research: a review of perspectives on United States studies with international context. J. Hazard. Mater. 2022;432:128604.

10. Phairuang W., Inerb M., Hata M., Furuuchi M. Characteristics of trace elements bound to ambient nanoparticles (PM0.1) and a health risk assessment in southern Thailand. J. Hazard Mater. 2022;425:127986.

11. Fedotov P.S., Ermolin M.S., Karandashev V.K., Ladonin D.V. Characterization of size, morphology and elemental composition of nano-, submicron, and micron particles of street dust separated using field-flow fractionation in a rotating coiled column. Talanta. 2014;130:1–7.

12. Ermolin M.S., Fedotov P.S., Ivaneev A.I., Karandashev V.K., Fedyunina N.N., Burmistrov A.A. A contribution of nanoscale particles of road-deposited sediments to the pollution of urban runoff by heavy metals. Chemosphere. 2018;210:65–75.

13. Gualtieri M., Øvrevik J., Holme J.A., Perrone M.G., Bolzacchini E., Schwarze P.E., Camatini M. Differences in cytotoxicity versus pro-inflammatory potency of different PM fractions in human epithelial lung cells. Toxicol. In Vitro. 2010;24(1):29–39.

14. Babin K., Antoine F., Goncalves D.M., Girard D. TiO2, CeO2 and ZnO nanoparticles and modulation of the degranulation process in human neutrophils. Toxicol. Lett. 2013;221(1):57–63.

15. Masoud R., Bizouarn T., Trepout S., Wien F., Baciou L., Marco S., Houée Levin C. Titanium dioxide nanoparticles increase superoxide anion production by acting on NADPH oxidase. PLoS One. 2015;10(12):e0144829.

16. Poulsen K.M., Albright M.C., Niemuth N.J., Tighe R.M,. Payne C.K. Interaction of TiO2 nanoparticles with lung fluid proteins and the resulting macrophage inflammatory response. Environ. Sci. Nano. 2023;10(9):2427–2436.

17. Pavlin M., Lojk J., Strojan K., Hafner-Bratkovič I., Jerala R., Leonardi A., Križaj I., Drnovšek N., Novak S., Veranič P., Bregar V.B. The relevance of physico-chemical properties and protein corona for evaluation of nanoparticles immunotoxicity-in vitro correlation analysis on THP-1 macrophages. Int. J. Mol. Sci. 2022;23(11):6197.

18. Svadlakova T., Holmannova D., Kolackova M., Malkova A., Krejsek J., Fiala Z. Immunotoxicity of carbon-based nanomaterials, starring phagocytes. Int. J. Mol. Sci. 2022;23(16):8889.

19. Glencross D.A., Ho T-R., Camiña N., Hawrylowicz C.M., Pfeffer P.E. Air pollution and its effects on the immune system. Free Radic. Biol. Med. 2020;151:56–68.

20. Vorobjeva N.V., Chernyak B.V. NETosis: molecular mechanisms, role in physiology and pathology. Biochemistry (Mosc.). 2020;85(10):1178–1190.

21. Mass E., Nimmerjahn F., Kierdorf K., Schlitzer A. Tissue-specific macrophages: how they develop and choreograph tissue biology. Nat. Rev. Immunol. 2023;23(9):563–579.

22. Sheu K.M., Hoffmann A. Functional hallmarks of healthy macrophage responses: their regulatory basis and disease relevance. Annu. Rev. Immunol. 2022;40(1):295–321.

23. Ivaneev A.I., Brzhezinskiy A.S., Karandashev V.K., Ermolin M.S., Fedotov P.S. Assessment of sources, environmental, ecological, and health risks of potentially toxic elements in urban dust of Moscow megacity, Russia. Chemosphere. 2023;321:138142.

24. Ivaneev A.I., Ermolin M.S., Fedotov P.S., Faucher S., Lespes G. Sedimentation field-flow fractionation in thin channels and rotating columns: from analytical to preparative scale separations. Sep. Purif. Rev. 2020;50(4):363–379.

25. Vorobjeva N., Prikhodko A., Galkin I., Pletjushkina O., Zinovkin R., Sud’ina G., Chernyak B., Pinegin B. Mitochondrial reactive oxygen species are involved in chemoattractant-induced oxidative burst and degranulation of human neutrophils in vitro. Eur. J. Cell Biol. 2017;96(3):254–265.

26. Vorobjeva N., Galkin I., Pletjushkina O., Golyshev S., Zinovkin R., Prikhodko A., Pinegin V., Kondratenko I., Pinegin B., Chernyak B. Mitochondrial permeability transition pore is involved in oxidative burst and NETosis of human neutrophils. Biochim. Biophys. Acta Mol. Basis Dis. 2020;1866(5):165664.

27. Chanput W., Mes J.J., Wichers H.J. THP-1 cell line: an in vitro cell model for immune modulation approach. Int. Immunopharmacol. 2014;23(1):37–45.

28. Mohd Yasin Z.N., Mohd Idrus F.N., Hoe C.H., Yvonne-Tee G.B. Macrophage polarization in THP-1 cell line and primary monocytes: a systematic review. Differentiation. 2022;128:67–82.

29. Kettler K., Giannakou C., de Jong W.H., Hendriks A.J., Krystek P. Uptake of silver nanoparticles by monocytic THP-1 cells depends on particle size and presence of serum proteins. J. Nanopart. Res. 2016;18(9):286.

30. Premshekharan G., Nguyen K., Zhang H., Forman H.J., Leppert V.J. Low dose inflammatory potential of silica particles in human-derived THP-1 macrophage cell culture studies – mechanism and effects of particle size and iron. Chem. Biol. Interact. 2017;272:160–171.

31. Brzicova T., Javorkova E., Vrbova K., Zajicova A., Holan V., Pinkas D., Philimonenko V., Sikorova J., Klema J., Topinka J., Rossner P. Jr. Molecular responses in THP-1 macrophage-like cells exposed to diverse nanoparticles. Nanomaterials. 2019;9(5):687

32. Zijno A., Cavallo D., Di Felice G., Ponti J., Barletta B., Butteroni C., Corinti S., De Berardis B., Palamides J., Ursini C.L., Fresegna A.M., Ciervo A., Maiello R., Barone F. Use of a common European approach for nanomaterials’ testing to support regulation: a case study on titanium and silicon dioxide representative nanomaterials. J. Appl. Toxicol. 2020;40(11):1511–1525.

33. Smulders S., Kaiser J.-P., Zuin S., Van Landuyt K.L., Golanski L., Vanoirbeek J., Wick P., Hoet P.H. Contamination of nanoparticles by endotoxin: evaluation of different test methods. Part. Fibre Toxicol. 2012;9:41.

34. Bhor V.M., Thomas C.J., Surolia N., Surolia A. Polymyxin B: an ode to an old antidote for endotoxic shock. Mol. Biosyst. 2005;1(3):213–222.

35. Monopoli M.P., Aberg C., Salvati A., Dawson K.A. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 2012;7(12):779–786.

36. Neagu M., Piperigkou Z., Karamanou K., Engin A.B., Docea A.O., Constantin C., Negrei C., Nikitovic D., Tsatsakis A. Protein bio-corona: critical issue in immune nanotoxicology. Arch. Toxicol. 2017;91(3):1031–1048.

37. Cai K., Wang A.Z., Yin L., Cheng J. Bio-nano interface: The impact of biological environment on nanomaterials and their delivery properties. J. Control Release. 2017;263:211–222.

38. Bianchi M.G., Allegri M., Chiu M., Costa A.L., Blosi M., Ortelli S., Bussolati O, Bergamaschi E. Lipopolysaccharide adsorbed to the bio-corona of TiO 2 nanoparticles powerfully activates selected pro-inflammatory transduction pathways. Front. Immunol. 2017;8:866.

39. Li Y., Shi Z., Radauer-Preiml I., Andosch A., Casals E., Luetz-Meindl U., Cobaleda M., Lin Z., Jaberi-Douraki M., Italiani P., Horejs-Hoeck J., Himly M., Monteiro-Riviere N.A., Duschl A., Puntes V.F., Boraschi D. Bacterial endotoxin (lipopolysaccharide) binds to the surface of gold nanoparticles, interferes with biocorona formation and induces human monocyte inflammatory activation. Nanotoxicology. 2017;11(9–10):1157–1175.

40. Borregaard N., Cowland J.B. Granules of the human neutrophilic polymorphonuclear leukocyte. Blood. 1997;89(10):3503–3521.

41. Guthrie L.A., McPhail L.C., Henson P.M., Johnston R.B. Jr. Priming of neutrophils for enhanced release of oxygen metabolites by bacterial lipopolysaccharide. Evidence for increased activity of the superoxide-producing enzyme. J. Exp. Med. 1984;160(6):1656–1671.

42. Goodridge H.S., Wolf A.J., Underhill D.M. Betaglucan recognition by the innate immune system. Immunol. Rev. 2009;230(1):38–50.

43. Forehand J.R., Pabst M.J., Phillips W.A., Johnston R.B. Jr. Lipopolysaccharide priming of human neutrophils for an enhanced respiratory burst. Role of intracellular free calcium. J. Clin. Invest. 1989;83(1):74–83.

44. Böhmer R.H., Trinkle L.S., Staneck J.L. Dose effects of LPS on neutrophils in a whole blood flow cytometric assay of phagocytosis and oxidative burst. Cytometry. 1992;13(5):525–531.

45. Wan J., Shan Y., Fan Y., Fan C., Chen S., Sun J., Zhu L., Qin L., Yu M., Lin Z. NF-κB inhibition attenuates LPS-induced TLR4 activation in monocyte cells. Mol. Med. Rep. 2016;14(5):4505–4510.

46. Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol. Cell. 2002;10(2):417–426.

47. Kagi T., Naganuma R., Inoue A., Noguchi T., Hamano S., Sekiguchi Y., Hwang G.W., Hirata Y., Matsuzawa A. The polypeptide antibiotic polymyxin B acts as a pro-inflammatory irritant by preferentially targeting macrophages. J. Antibiot. 2022;75(1):29–39.

48. Arango Duque G., Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front. Immunol. 2014;5:491.

49. Barnes P.J. The cytokine network in chronic obstructive pulmonary disease. Am. J. Respir. Cell Mol. Biol. 2009;41(6):631–638.

50. Matera M.G., Calzetta L., Cazzola M. TNF-alpha inhibitors in asthma and COPD: we must not throw the baby out with the bath water. Pulm. Pharmacol. Ther. 2010;23(2):121–128.

51. Rincon M., Irvin C.G. Role of IL-6 in asthma and other inflammatory pulmonary diseases. Int. J. Biol. Sci. 2012;8(9):1281–1290.

52. Barnes P.J. Targeting cytokines to treat asthma and chronic obstructive pulmonary disease. Nat. Rev. Immunol. 2018;18(7):454–466.

53. Osei E.T., Brandsma C.-A., Timens W., Heijink I.H., Hackett T.-L. Current perspectives on the role of interleukin-1 signalling in the pathogenesis of asthma and COPD. Eur. Respir. J. 2020;55(2):1900563.


Review

For citations:


Pavlyuchenkova A.N., Vorobyeva N.V., Dashkevich A.A., Zinovkina L.A., Ivaneev A.I., Ermolin M.S., Fedotov P.S., Zinovkin R.A., Chelombitko M.A., Chernyak B.V. Urban dust nanoparticles induce proinflammatory activation of neutrophils and macrophages. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2024;79(3):211-220. (In Russ.) https://doi.org/10.55959/MSU0137-0952-16-79-3-5

Views: 93


ISSN 0137-0952 (Print)