Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

Multiple sclerosis. Some features of pathology and prospects for therapy. Part 2

https://doi.org/10.55959/MSU0137-0952-16-79-4-1

Abstract

Multiple sclerosis (MS) is one of the most common neurological diseases and the number of affected people is constantly growing worldwide. Untreated MS leads to disability of the most capable part of the young population, and in recent years it has been diagnosed increasingly in elderly patients as well. The second part of our review is devoted to the prospects of MS therapies currently under development. Mitochondria and the use of mitochodria-targeted antioxidants, neutrophils, as well as immune cells affected by pathology and other differentiated cells, which can be reprogrammed and replaced by healthy cells using stem cells, are considered as targets in MS treatment. Helminth therapy, accompanied by a shift in the composition of the microbiota of MS patients and the release of antioxidants in the tissues of the examined humans and model animals, may lead to immunomodulation and reduction of oxidative stress, providing significant attenuation of the disease. Approaches to the treatment of elderly MS patients are discussed.

About the Authors

E. K. Fetisova
Belozersky Institute of Physico–Chemical Biology, Lomonosov Moscow State University
Russian Federation

1–40 Leninskie Gory, Moscow, 1119991 



N. V. Vorobjeva
Biology Faculty, Lomonosov Moscow State University
Russian Federation

1–12 Leninskie Gory, Moscow, 119234 



M. S. Muntyan
Belozersky Institute of Physico–Chemical Biology, Lomonosov Moscow State University
Russian Federation

1–40 Leninskie Gory, Moscow, 1119991 



References

1. Huang W.J., Chen W.W., Zhang X. Multiple sclerosis: Pathology, diagnosis and treatments. Exp. Ther. Med. 2017;13(6):3163–3166.

2. Hauser S.L., Cree B.A.C. Treatment of multiple sclerosis: A review. Am. J. Med. 2020;133(12):1380-1390.e2.

3. Macaron G., Larochelle C., Arbour N., Galmard M., Girard J.M., Prat A., Duquette P. Impact of aging on treatment considerations for multiple sclerosis patients. Front. Neurol. 2023;14:1197212.

4. Ostolaza A., Corroza J., Ayuso T. Multiple sclerosis and aging: comorbidity and treatment challenges. Mult. Scler. Relat. Disord. 2021;50:102815.

5. Zhang Y., Atkinson J., Burd C.E., Graves J., Segal B.M. Biological aging in multiple sclerosis. Mult. Scler. 2023;29(14):1701–1708.

6. Zeydan B., Kantarci O.H. Impact of age on multiple sclerosis disease activity and progression. Curr. Neurol. Neurosci. Rep. 2020;20(7):24.

7. Fetisova E., Vorobjeva N., Muntyan M. Multiple sclerosis. Some features of pathology and prospects for therapy. Part 1. Adv. Gerontol. 2024;14(2):35–48.

8. Vorobjeva N.V., Chernyak B.V. NETosis: molecular mechanisms, role in physiology and pathology. Biochemistry (Mosc.). 2020;85(10):1178–1190.

9. De Bondt M., Hellings N., Opdenakker G., Struyf S. Neutrophils: underestimated players in the pathogenesis of multiple sclerosis (MS). Int. J. Mol. Sci. 2020;21(12):4558.

10. Dhaiban S., Al-Ani M., Elemam N.M., AlAawad M.H., Al-Rawi Z., Maghazachi A.A. Role of peripheral immune cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Science. 2021;3(1):12.

11. Grebenciucova E., Pruitt A. Infections in patients receiving multiple sclerosis disease-modifying therapies. Curr. Neurol. Neurosci. Rep. 2017;17(11):88.

12. Fetisova E., Chernyak B., Korshunova G., Muntyan M., Skulachev V. Mitochondria-targeted antioxidants as a prospective therapeutic strategy for multiple sclerosis. Curr. Med. Chem. 2017;24(19):2086–2114.

13. Fetisova E.K., Muntyan M.S., Lyamzaev K.G., Chernyak B.V. Therapeutic effect of the mitochondriatargeted antioxidant SkQ1 on the culture model of multiple sclerosis. Oxid. Med. Cell. Longev. 2019;2019:2082561.

14. Fock E.M., Parnova R.G. Protective effect of mitochondria-targeted antioxidants against inflammatory response to lipopolysaccharide challenge: a review. Pharmaceutics. 2021;13(2):144.

15. Jiang Q., Yin J., Chen J., Ma X., Wu M., Liu G., Yao K., Tan B., Yin Y. Mitochondria-targeted antioxidants: a step towards disease treatment. Oxid. Med. Cell. Longev. 2020;2020:8837893.

16. Liberman E.A., Topaly V.P., Tsofina L.M., Jasaitis A.A., Skulachev V.P. Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria. Nature. 1969;222(5198):1076–1078.

17. Korshunova G.A., Shishkina A.V., Skulachev M.V. Design, synthesis, and some aspects of the biological activity of mitochondria-targeted antioxidants. Biochemistry (Mosc.). 2017;82(7):760–777.

18. Fields M., Marcuzzi A., Gonelli A., Celeghini C., Maximova N., Rimondi E. Mitochondria-targeted antioxidants, an innovative class of antioxidant compounds for neurodegenerative diseases: perspectives and limitations. Int. J. Mol. Sci. 2023;24(4):3739.

19. Skulachev V.P., Antonenko Y.N., Cherepanov D.A., et al. Prevention of cardiolipin oxidation and fatty acid cycling as two antioxidant mechanisms of cationic derivatives of plastoquinone (SkQs). Biochim. Biophys. Acta BBA-Bioenergetics. 2010;1797(6–7):878–89.

20. Antonenko Y.N., Avetisyan A.V., Bakeeva L.E., et al. Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: synthesis and in vitro studies. Biochemistry (Mosc.). 2008;73(12):1273–1287.

21. Murphy M.P., Smith R.A.J. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu. Rev. Pharmacol. Toxicol. 2007;47(1):629–656.

22. Открытое исследование I фазы по изучению фармакокинетики, безопасности и переносимости препарата Пластомитин® при однократном приеме возрастающих доз у здоровых добровольцев. (Ответственный исследователь Щукин И.А.) [Электронный ресурс]. Государственный реестр лекарственных средств. 2016. Дата обновления: 15.12.2024. URL: https://grlsbase.ru/clinicaltrails/clintrail/3570 (дата обращения: 15.12.2024).

23. Fassas A., Anagnostopoulos A., Kazis A., Kapinas K., Sakellari I., Kimiskidis V., Tsompanakou A. Peripheral blood stem cell transplantation in the treatment of progressive multiple sclerosis: first results of a pilot study. Bone Marrow Transpl. 1997;20(8):631–638.

24. Iacobaeus E., Kadri N., Lefsihane K., Boberg E., Gavin C., Törnqvist Andrén A., Lilja A., Brundin L., Blanc K.L. Short and long term clinical and immunologic follow up after bone marrow mesenchymal stromal cell therapy in progressive multiple sclerosis – a phase I study. J. Clin. Med. 2019;8(12):2102.

25. Федулов А.С., Борисов А.В., Зафранская М.М., Кривенко С.И., Марченко Л.Н., Качан Т.В., Московских Ю.В., Нижегородова Д.Б. Сравнительная оценка эффективности однократного и курсового применения аутологичной трансплантации мезенхимальных стволовых клеток в терапии рассеянного склероза. РМЖ. Медицинское обозрение. 2019;3(4-2):54–58.

26. Bisaga G.N., Topuzova M.P., Malko V.A., Motorin D.V., Alekseeva Yu.A., Badaev R.S., Krinitsina T.V., Alekseeva T.M. High-dose chemotherapy with autologous hematopoietic stem cell transplantation in multiple sclerosis: intermediate results of 3 years research. Russ. Neurol. J. 2022;27(6):22–31.

27. Pluchino S., Quattrini A., Brambilla E., Gritti A., Salani G., Dina G., Galli R., Del Carro U., Amadio S., Bergami A., Furlan R., Comi G., Vescovi A.L., Martino G. Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature. 2003;422(6933):688–694.

28. Genchi A., Brambilla E., Sangalli F., et al. Neural stem cell transplantation in patients with progressive multiple sclerosis: an open-label, phase 1 study. Nat. Med. 2023;29(1):75–85.

29. Uccelli A., Laroni A., Ali R., et al. Safety, tolerability, and activity of mesenchymal stem cells versus placebo in multiple sclerosis (MESEMS): a phase 2, randomised, double-blind crossover trial. Lancet Neurol. 2021;20(11):917–929.

30. Сороковикова Т.В., Морозов А.М., Крюкова А.Н., Наумова С.А., Беляк М.А. Перспективы лечения прогрессирующих форм рассеяного склероза трасплантацией стволовых клеток (обзор литературы). Вестник медицинского института «Реавиз». Реабилитация, врач и здоровье. 2023;13(4):154–161.

31. Cecerska-Heryć E., Pękała M., Serwin N., Gliźniewicz M., Grygorcewicz B., Michalczyk A., Heryć R., Budkowska M., Dołęgowska B. The use of stem cells as a potential treatment method for selected neurodegenerative diseases: review. Cell Mol. Neurobiol. 2023;43(6):2643–2673.

32. Xie C., Liu Y.Q., Guan Y.T., Zhang G.X. Induced stem cells as a novel multiple sclerosis therapy. Curr. Stem Cell Res. Ther. 2016;11(4):313–320.

33. Yun W., Choi K.A., Hwang I., et al. OCT4-induced oligodendrocyte progenitor cells promote remyelination and ameliorate disease. NPJ Regen. Med. 2022;7(1):4.

34. Wang Y., Chang K., Liu C., Na W., Jiang Z., Xiong J. Clemastine promotes oligodendrocyte precursor cell differentiation and myelination after acute radiation injury. J. Radiat. Res. Radiat. Proces. 2023;39(5):48–55.

35. Caverzasi E., Papinutto N., Cordano C., Kirkish G., Gundel T.J., Zhu A., Akula A.V., Boscardin W.J., Neeb H., Henry R.G., Chan J.R., Green A.J. MWF of the corpus callosum is a robust measure of remyelination: Results from the ReBUILD trial. Proc. Nat. Acad. Sci. U.S.A. 2023;120(20):e2217635120.

36. Hansen C.S., Hasseldam H., Bacher I.H., Thamsborg S.M., Johansen F.F., Kringel H. Trichuris suis secrete products that reduce disease severity in a multiple sclerosis model. Acta Parasitol. 2017;62(1):22–28.

37. Fleming J., Hernandez G., Hartman L., Maksimovic J., Nace S., Lawler B., Risa T., Cook T., Agni R., Reichelderfer M., Luzzio C., Rolak L., Field A., Fabry Z. Safety and efficacy of helminth treatment in relapsing-remitting multiple sclerosis: results of the HINT 2 clinical trial. Mult. Scler. J. 2019;25(1):81–91.

38. Yordanova I.A., Ebner F., Schulz A.R., Steinfelder S., Rosche B., Bolze A., Paul F., Mei H.E., Hartmann S. The worm-specific immune response in multiple sclerosis patients receiving controlled Trichuris suis ova immunotherapy. Life (Basel). 2021;11(2):101.

39. Libbey J.E., Cusick M.F., Fujinami R.S. Role of pathogens in multiple sclerosis. Int. Rev. Immunol. 2014;33(4):266–283.

40. Tanasescu R., Tench C.R., Constantinescu C.S., Telford G., Singh S., Frakich N., Onion D., Auer D.P., Gran B., Evangelou N., Falah Y., Ranshaw C., Cantacessi C., Jenkins T.P., Pritchard D.I. Hookworm treatment for relapsing multiple sclerosis: a randomized double-blinded placebo-controlled trial. JAMA Neurol. 2020;77(9):1089–1098.

41. Jenkins T.P., Pritchard D.I., Tanasescu R., Telford G., Papaiakovou M., Scotti R., Cortés A., Constantinescu C.S., Cantacessi C. Experimental infection with the hookworm, Necator americanus, is associated with stable gut microbial diversity in human volunteers with relapsing multiple sclerosis. BMC Biol. 2021;19(1):74.

42. Wegener Parfrey L., Jirků M., Šíma R., Jalovecka M., Sak B., Grigore K., Jirků Pomajbíková K. A benign helminth alters the host immune system and the gut microbiota in a rat model system. PLoS One. 2017;12(8):e0182205.

43. Calvani N.E.D., De Marco Verissimo C., Jewhurst H.L., Cwiklinski K., Flaus A., Dalton J.P. Two distinct superoxidase dismutases (SOD) secreted by the helminth parasite Fasciola hepatica play roles in defence against metabolic and host immune cell-derived reactive oxygen species (ROS) during growth and development. Antioxidants. 2022;11(10):1968.

44. Otero L., Bonilla M., Protasio A.V., Fernández C., Gladyshev V.N., Salinas G. Thioredoxin and glutathione systems differ in parasitic and free-living platyhelminths. BMC Genomics. 2010;11:237.

45. Xiang C., Zhong G., Wang H. IL-9 plays a critical role in helminth-induced protection against COVID-19- related cytokine storms. mBio. 2024;15(7):e0122924.

46. Cao Z., Wang J., Liu X., Liu Y., Li F., Liu M., Chiu S., Jin X. Helminth alleviates COVID-19-related cytokine storm in an IL-9-dependent way. mBio. 2024;15(6):e00905-24.

47. Solaro C., Ponzio M., Moran E., Tanganelli P., Pizio R., Ribizzi G., Venturi S., Mancardi G.L., Battaglia M.A. The changing face of multiple sclerosis: Prevalence and incidence in an aging population. Mult. Scler. 2015;21(10):1244–1250.

48. Marrie R.A., Cohen J., Stuve O., Trojano M., Sørensen P.S., Reingold S., Cutter G., Reider N. A systematic review of the incidence and prevalence of comorbidity in multiple sclerosis: overview. Mult. Scler. 2015;21(3):263–281.

49. Noseworthy J., Paty D., Wonnacott T., Feasby T., Ebers G. Multiple sclerosis after age 50. Neurology 1983;33(12):1537–1537.

50. Minden S.L., Frankel D., Hadden L.S., Srinath K.P., Perloff J.N. Disability in elderly people with multiple sclerosis: An analysis of baseline data from the Sonya Slifka Longitudinal Multiple Sclerosis Study. NeuroRehabilitation. 2004;19(1):55–67.

51. Zinganell A., Göbel G., Berek K., Hofer B., Asenbaum-Nan S., Barang M., Böck K., Bsteh C., Bsteh G., Eger S., Eggers C., Fertl E., Joldic D., Khalil M., Langenscheidt D. et al. Multiple sclerosis in the elderly: a retrospective cohort study. J. Neurol. 2024;271(2):674–687.

52. Weideman A.M., Tapia-Maltos M.A., Johnson K., Greenwood M., Bielekova B. Meta-analysis of the age-dependent efficacy of multiple sclerosis treatments. Front. Neurol. 2017;8:577.

53. Bjornevik K., Cortese M., Healy, B.C., Kuhle J., Mina M.J., Leng Y., Elledge S.J., Niebuhr D.W., Scher A.I., Munger K.L., Ascherio A. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science. 2022;375(6578):296–301.

54. Matell H., Lycke J., Svenningsson A., Holmén C., Khademi M., Hillert J., Olsson T., Piehl F. Age-dependent effects on the treatment response of natalizumab in MS patients. Mult. Scler. 2015;21(1):48–56.

55. Gelibter S., Saraceno L., Pirro F., Susani E.L., Protti A. As time goes by: Treatment challenges in elderly people with multiple sclerosis. J. Neuroimmunol. 2024;391:578368.

56. Muñoz J.S., Santiago A.D., Escudero J.C., Merino J.A.G. Case report: Primary cytomegalovirus infection in a patient with late onset multiple sclerosis treated with dimethyl fumarate. Front. Neurol. 2024;15:1363876.

57. Oudrer N. Multiple sclerosis in elderly patients: When we can stopped treatment? Mult. Scler. Relat. Disord. 2023;80:105181.

58. Skulachev V.P., Anisimov V.N., Antonenko Y.N., et al. An attempt to prevent senescence: a mitochondrial approach. Biochim. Biophys. Acta (BBA)-Bioenergetics. 2009;1787(5):437–461.

59. Zielonka J., Joseph J., Sikora A., Hardy M., Ouari O., Vasquez-Vivar J., Cheng G., Lopez M., Kalyanaraman B. Mitochondria-targeted triphenylphosphonium-based compounds: syntheses, mechanisms of action, and therapeutic and diagnostic applications. Chem. Rev. 2017;117(15):10043–10120.

60. Lin M.M., Liu N., Qin Z.H., Wang Y. Mitochondrial-derived damage-associated molecular patterns amplify neuroinflammation in neurodegenerative diseases. Acta Pharmacol. Sin. 2022;43(10):2439–2447.

61. Sanabria-Castro A., Alape-Girón A., FloresDíaz M., Echeverri-McCandless A., Parajeles-Vindas A. Oxidative stress involvement in the molecular pathogenesis and progression of multiple sclerosis: a literature review. Rev. Neurosci. 2024;35(3):355–371.

62. Sutter P.A., McKenna M.G., Imitola J., Pijewski R.S., Crocker S.J. Therapeutic opportunities for targeting cellular senescence in progressive multiple sclerosis. Curr. Opin. Pharmacol. 2022;63:102184.

63. Ghosh A., Chandran K., Kalivendi S.V., Joseph J., Antholine W.E., Hillard C.J., Kanthasamy A.,Kanthasamy A., Kalyanaraman B. Neuroprotection by a mitochondria-targeted drug in a Parkinson’s Disease model. Free Radical Biol. Med. 2010;49:1674−1684.


Review

For citations:


Fetisova E.K., Vorobjeva N.V., Muntyan M.S. Multiple sclerosis. Some features of pathology and prospects for therapy. Part 2. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2024;79(4):269-279. (In Russ.) https://doi.org/10.55959/MSU0137-0952-16-79-4-1

Views: 144


ISSN 0137-0952 (Print)