Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

Study of structural features of 5S rDNA non-transcribed spacers of Citrus sinensis and C. reticulata

https://doi.org/10.55959/MSU0137-0952-16-79-4-3

Abstract

Orange (Citrus sinensis) and mandarin (C. reticulata) are economically important agricultural plants grown in many countries of the world, including southern Russia. In this regard, their genetic studies are widely carried out, including both sequencing of individual loci and whole genome sequencing. Some of the most important loci in a genome are the 5S ribosomal RNA gene arrays, which are tandem repeats. Their monomers consist of a conservative 120-nucleotide coding part and a non-transcribed spacer (NTS), which often has different length and sequence in different species. In this work, 8 NTSs of orange (Hamlin variety) and 16 NTSs of mandarin (3 willow-leaved mandarin, as well as 8 Dwarf Unshiu, 4 Tiahara, and 1 Unshiu varieties) were sequenced and studied. The obtained NTSs had different lengths and were divided into two classes – NTS_218 (217-221 bp long) and NTS_381 (381 bp long). The internal structure of NTSs of both classes was studied, including such characteristics as the sequence of the 16-17 bp start region involved in transcription termination and polyadenylation, the presence of poly-T and poly-G motifs, TATA-like motifs at position -25–-30 bp from the end of NTS, the presence of microsatellite motifs, etc. The obtained results expand the theoretical understanding of the NTS nature, knowledge of the NTS structure in closely related species and can be used in the analysis of Citrus hybrids and varieties bred with the participation of orange and mandarin.

About the Authors

O. S. Alexandrov
All-Russia Research Institute of Agricultural Biotechnology
Russian Federation

Timiryazevskaya 42, 127550 Moscow 



D. V. Romanov
All-Russia Research Institute of Agricultural Biotechnology
Russian Federation

Timiryazevskaya 42, 127550 Moscow 



References

1. Wu G.A., Terol J., Ibanez V., et al. Genomics of the origin and evolution of Citrus. Nature. 2018;554(7692):311–316.

2. Жбели А., Сорокопудов В.Н. Перспективы выращивания цитрусовых культур в Cирии. Вест. Ланд. Арх. 2021;28:18–21.

3. Budiarto R., Pratita D. Citrus export performances of Southeast Asian Countries: A comparative analysis. Teknotan. 2022;16:7–12.

4. Kapuya T., Chinembiri E.K., Kalaba M.W. Identifying strategic markets for South Africa’s Citrus exports. Agrekon. 2014;53(1):124–158.

5. Márquez O., Borda R.C., Márquez F., Bravo L.R. Production and export of peruvian mandarin to the Russian Federation market, as a business opportunity, period 2013–2017. J. Glob. Manag. Sci. 2018;1(1):22–29.

6. Lachman J., Tacsir E., Pereyra M. Public–private cooperation and the provision of public goods for lemons and citrus exports from Argentina and Uruguay. J. Agribus. Dev. Emerg. Econ. 2022;12(4):604–619.

7. The Citrus Genome. Eds. A. Gentile, S. La Malfa, Z. Deng. Cham.: Springer Nature Switzerland AG; 2020. 294 pp.

8. Gmitter F.G., Chen C., Machado M.A. de Souza A.A., Ollitrault P., Froehlicher Y., Shimizu T. Citrus genomics. Tree Genet. Genomes. 2021;8(3):611–626.

9. Su H.J., Hogenhout S.A., Al-Sadi A.M., Kuo C.H. Complete chloroplast genome sequence of Omani Lime (Citrus aurantiifolia) and comparative analysis within the Rosids. PloS One. 2014;9(11):e113049.

10. Xu Q., Chen L.L., Ruan X. et al. The draft genome of sweet orange (Citrus sinensis). Nat. Genet. 2013;45:59–66.

11. Sun L., Nasrullah, Ke F., Nie Z., Wang P., Xu J. Citrus genetic engineering for disease resistance: past, present and future. Int. J. Mol. Sci. 2019;20(21):5256.

12. Moraleva А.А., Deryabin А.S., Rubtsov Yu.P., Rubtsovа М.P., Dontsova О.А. Eukaryotic Ribosome Biogenesis: The 60S Subunit. Acta Naturae. 2022;14(2):39–49.

13. Барков А.Н., Трубникова Е.В., Стабровская Н.В. Молекулярные особенности организации и транскрипции рибосомных генов. Уч. зап. Эл. Науч. Журн. КГУ. 2007;1:54–73.

14. Little R.D., Braaten D.C. Genomic organization of human 5 S rDNA and sequence of one tandem repeat. Genomics. 1989;4(3):376–383.

15. Petrová I., Fajkus J. The rDNA loci – intersections of replication, transcription, and repair pathways. Int. J. Mol. Sci. 2021;22(3):1302.

16. Wicke S., Costa A., Muñoz J., Quandt D. Restless 5S: the re-arrangement(s) and evolution of the nuclear ribosomal DNA in land plants. Mol. Phylogenet. Evol. 2011;61(2):321–332.

17. Sastri D.C., Hilu K., Appels R., Lagudah E.S., Playford J., Baum B.R. An overview of evolution in plant 5S DNA. Pl. Syst. Evol. 1992;183(3–4):169–181.

18. Yang Y.W., Tseng P.F., Tai P.Y., Chang Ch.J. Phylogenetic position of Raphanus in relation to Brassica species based on 5S rRNA spacer sequence data. Bot. Bull. Acad. Sin. 1998;39(3):153–160.

19. Brown G.R, Carlson J.E. Molecular cytogenetics of the genes encoding 18s-5.8s-26s rRNA and 5s rRNA in two species of spruce (Picea). Theoret. Appl. Genet. 1997;95(1–2):1–9.

20. Liu Z.L., Zhang D., Wang X.Q., Ma X.F., Wang X.R. Intragenomic and interspecific 5S rDNA sequence variation in five Asian pines. Am. J. Bot. 2003;90(1):17–24.

21. Matyácek R., Fulnecek J., Lim K.Y., Leitch A.R., Kovarík A. Evolution of 5S rDNA unit arrays in the plant genus Nicotiana (Solanaceae). Genome. 2002;45(3)556–562.

22. Baum B.R., Edwards T., Johnson D.A. Codependence of repetitive sequence classes in genomes: phylogenetic analysis of 5S rDNA families in Hordeum (Triticeae: Poaceae). Genome. 2010;53(3):180–202.

23. Alexandrov O.S., Karlov G.I. Development of 5S rDNA-based molecular markers for the identification of Populus deltoides Bartr. ex-Marshall, Populus nigra L., and their hybrids. Forests. 2018;9(10):604.

24. Alexandrov O.S., Karlov G.I. The development of Populus alba L. and Populus tremula L. species specific molecular markers based on 5S rDNA nontranscribed spacer polymorphism. Forests. 2019;10(12):1092.

25. Alexandrov O.S., Karlov G.I. The development of new species-specific molecular markers based on 5S rDNA in Elaeagnus L. species. Plants. 2021;10(12):2713.

26. Alexandrov O.S., Divashuk M.G., Karlov G.I. Development of the St/J/Vgenome specific molecular marker on basis of 5S-rDNA polymorphism. Moscow Univ. Biol. Sci. Bull. 2018;73(1):18–23.

27. Alexandrov O.S., Kroupin P.Yu., Karlov G.I., Divashuk M.G. The improvement of the CAPS-marker for St, J and V subgenome identification in Triticeae tribe plants using the 5S non-transcribed spacer polymorphism. Res. Crops. 2024;25(1):12–19.

28. Alexandrov O.S., Razumova O.V., Karlov G.I. A comparative study of 5S rDNA non-transcribed spacers in Elaeagnaceae species. Plants. 2021;10(1):4.

29. Negi M.S., Rajagopal J., Chauhan N., Cronn R., Lakshmikumaran M. Length and sequence heterogeneity in 5S rDNA of Populus deltoides. Genome. 2002;45(6):1181–1188.

30. Fernández M., Ruiz M.L., Linares C., Fominaya A., Pérez de la Vega M. 5S rDNA genome regions of Lens species. Genome. 2005;48(5):937–942.

31. Cruz V.P., Oliveira C., Foresti F. An intriguing model for 5S rDNA sequences dispersion in the genome of fresh water stingray Potamotrygon motoro (Chondrichthyes: Potamotrygonidae). Mol. Biol. 2015;49(3):466–469.

32. Campo D., Machado-Schiaffino G., Horreo J.L., Garcia-Vazquez E. Molecular organization and evolution of 5S rDNA in the genus Merluccius and their phylogenetic implications. J. Mol. Evol. 2009;68(3):208–216.

33. Deiana A.M., Cau A., Salvadori S., Coluccia E., Cannas R., Milia A. Tagliavini J. Major and 5S ribosomal sequences of the largemouth bass Micropterus salmoides (Perciformes, Centrarchidae) are localized in GC-rich regions of the genome. Chromosome Res. 2000;8(3):213–218.

34. Moran P., Garcia-Vazquez E. Identification of highly prized commercial fish using a PCR-based methodology. Biochem. Mol. Biol. Educ. 2006;34(2)121–124.

35. Gornung E., De Innocentilis S., Annesi F., Sola L. Zebrafish 5S rRNA genes map to the long arms of chromosome 3. Chromosome Res. 2000;8(4):362.

36. Williamson R., Brownlee G.G. The sequence of 5S ribosomal RNA from two mouse cell lines. FEBS Lett. 1969;3(5):306–308.

37. Bhatia S., Singh K., Jagannathan V., Lakshmikumaran, M. Organization and sequence analysis of the 5S rRNA genes in Brassica campestris. Plant Sci. 1993;92(1):47–55.

38. Fernández-Tajes, J., Méndez, J. Identification of the razor clam species Ensis arcuatus, E. siliqua, E. directus, E. macha, and Solen marginatus using PCR-RFLP analysis of the 5S rDNA region. J. Agr. Food Chem. 2007;55(18):7278–7282.

39. Falistocco E., Passeri V., Marconi G. Investigations of 5S rDNA of Vitis vinifera L.: sequence analysis and physical mapping. Genome. 2007;50(10):927–938.

40. Doyle J.J., Doyle J.L. Isolation of plant DNA from fresh tissue. Focus. 1990;12(1):13–15.

41. Razumova O.V., Alexandrov O.S., Divashuk M.G., Sukhorada T.I., Karlov G.I. Molecular cytogenetic analysis of monoecious hemp (Cannabis sativa L.) cultivars reveals its karyotype variations and sex chromosomes constitution. Protoplasma. 2016;253(3):895–901.

42. GeneDoc: Analysis and visualization of genetic variation. [Электронный ресурс] URL: http://www.nrbsc.org/gfx/genedoc/ebinet.htm (дата обращения: 09.08.2024).

43. Wilson N. Genome analysis of Populus species: assessment of genetic diversity of P. deltoides, characterization of wide hybrids and phylogenetic analysis using molecular markers. New Delhi: Teri University, 2013. 177 pp.

44. Baum B.R., Bailey L.G. The 5S rDNA units in Kengyilia (Poaceae: Triticeae): Diversity of the nontranscribed spacer and genomic relationships. Can. J. Bot. 2000;78(12):1571–1579.

45. Baum B.R., Edwards T., Johnson D.A. Diversity within the genus Elymus (Poaceae: Triticeae) as investigated by the analysis of the nr5S rDNA variation in species with St and H haplomes. Mol. Genet. Genomics. 2015;290(1):329–342.

46. Baum B.R., Johnson D.A. The molecular diversity of the 5S rRNA gene in barley (Hordeum vulgare). Genome. 1994;37(6):992–998.

47. Baum B.R, Edwards T., Johnson D.A. Loss of 5S rDNA units in the evolution of Agropyron, Pseudoroegneria, and Douglasdeweya. Genome. 2008;51(8):589–598.

48. Scoles G.J., Gill B.S, Xin Z.-Y., Clarke B.C., McIntyre C.L., Chapman C., Appels R. Frequent duplication and deletion events in the 5S RNA genes and the associated spacer regions of the Triticeae. Pl. Syst. Evol. 1988;160(1–2):105–122.

49. Beridze T.G., Tsirekidze N.I., Roitberg M.A. On the tertiary structure of satellite DNA. Biochimie. 1992;74(2):187–194.

50. Murphy M.R., Fowlkes D.M., Fitzgerald-Hayes M. Analysis of centromere function in Saccharomyces cerevisiae using synthetic centromere mutants. Chromosoma. 1991;101(3):189–197.

51. Martinez-Balbas A., Rodrigues-Campo A., GarciaRamirez, M., Sainz J., Carrera P., Aymami J., Azorin F. Satellite DNAs contain sequences that induced curvature. Biochemistry. 1990;29(9):2342–2348.

52. Matyasek R., Gazdova B., Fajkus J., Bezděk M. NTRS, a new family of highly repetitive DNAs specific for the T1 chromosome of tobacco. Chromosoma. 1997;106(6):369–379.

53. Kralovics R., Fajkus J., Kovařik A., Bezděk, M. DNA curvature of the tobacco GRS repetitive sequence family and its relation to nucleosome positioning. J. Biomol. Struct. Dyn. 1995;12(5):1103–1119.

54. Fann J.-Y., Kovarik A., Hemleben V., Tsirekidze N.I., Beridze T.G. Molecular and structural evolution of Citrus satellite DNA. Theor. Appl. Genetics. 2001;103():1068–1073.

55. Alexandrov O.S., Karlov G.I. Molecular cytogenetic analysis and genomic organization of major DNA repeats in castor bean (Ricinus communis L.). Mol. Genet. Genomics. 2016;291(2);775–787.

56. Murray V. The frequency of poly(G) tracts in the human genome and their use as a sensor of DNA damage. Comput. Biol. Chem. 2015;54:13–17.

57. Spiegel J., Adhikari S., Balasubramanian S. The structure and function of DNA G-quadruplexes. Trends Chem. 2020;2(2):123–136.

58. Fleming, A.M., Zhou J., Wallace S.S., Burrows C.J. A role for the fifth G-track in G-quadruplex forming oncogene promoter sequences during oxidative stress: do these ‘‘spare tires’’ have an evolved function? ACS Cent. Sci. 2015;1(5):226–233.

59. Fleming, A.M., Ding Y., Burrows C.J. Oxidative DNA damage is epigenetic by regulating gene transcription via base excision repair. Proc. Natl. Acad. Sci. U.S.A. 2017;114(10):2604–2609.

60. Cogoi S., Ferino A., Miglietta G., Pedersen E.B., Xodo L.E. The regulatory G4 motif of the Kirsten ras (KRAS) gene is sensitive to guanine oxidation: implications on transcription. Nucleic Acids Res. 2018;46(2):661–676.

61. Bielskutė S., Plavec J., Podbevšek P. Impact of oxidative lesions on the human telomeric G-quadruplex. J. Am. Chem. Soc. 2019;141(6):2594–2603.

62. Lee H.T., Bose A., Lee C.Y., Opresko P.L., Myong S. Molecular mechanisms by which oxidative DNA damage promotes telomerase activity. Nucleic Acids Res. 2017;45(20):11752–11765.

63. Bjornsdottir G., Myers L.C. Minimal components of the RNA polymerase II transcription apparatus determine the consensus TATA box. Nucleic Acids Res. 2008;36(9):2906–2916.

64. Alexandrov O.S., Evtukhov A.V., Kiselev I.I., Karlov G.I. Molecular genetic features of 5S rDNA nontranscribed spacer in Hippophae rhamnoides L. Moscow Univ. Biol. Sci. Bull. 2016;71(4):57–60.

65. Животовский Л. А. Микросателлитная изменчивость в популяциях человека и методы ее изучения. Инф. Вест. ВОГиС. 2006;10(1):74–96.

66. Anmarkrud J.A., Kleven, O., Bachmann, L., Lifjeld J.T. Microsatellite evolution: Mutations, sequence variation, and homoplasy in the hypervariable avian microsatellite locus HrU10. BMC Evol. Biol. 2008;8:138.


Review

For citations:


Alexandrov O.S., Romanov D.V. Study of structural features of 5S rDNA non-transcribed spacers of Citrus sinensis and C. reticulata. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2024;79(4):298-305. (In Russ.) https://doi.org/10.55959/MSU0137-0952-16-79-4-3

Views: 91


ISSN 0137-0952 (Print)