High-power LED-based light source for photosensitizer efficiency assay against cell culture
https://doi.org/10.55959/MSU0137-0952-16-79-4-5
Abstract
The aim of the work is to develop a light source for uniform irradiation of cell cultures in plates and for determination of the efficiency of new photosensitizers. The designed scheme of the light source provides uniform irradiation of a 96-well plate with irradiance up to 76 mW/cm2 with temperature values not exceeding 43°C, which allows to use it for activation of photosensitizers. For approbation of the working modes of the unit, zinc phthalocyanine with cholinyl substituents (cholosens) and cell cultures HEK-293 and A431 were used as a model object. Dependences of cell survival on irradiation time and photosensitizer concentration were determined, and fluorescence images of the marker of reactive oxygen species in cells experiencing oxidative stress due to the photodynamic effect of photosensitizers were obtained. The results show a more than twofold difference in survival between cells in experimental and control wells, as well as uniform illumination of all wells of the plate.
Keywords
About the Authors
V. R. GudkovaRussian Federation
Leninskie gory 1–12, Moscow, 119234
D. A. Gvozdev
Russian Federation
Leninskie gory 1–12, Moscow, 119234
G. V. Tsoraev
Russian Federation
Leninskie gory 1–12, Moscow, 119234
A. M. Moysenovich
Russian Federation
Leninskie gory 1–12, Moscow, 119234
E. G. Maksimov
Russian Federation
Leninskie gory 1–12, Moscow, 119234
References
1. Gong L., Zhang Y., Liu C., Zhang M., Han S. Application of radiosensitizers in cancer radiotherapy. Int. J. Nanomed. 2021;16:1083–102.
2. Tilsed C.M., Fisher S.A., Nowak A.K., Lake R.A., Lesterhuis W.J. Cancer chemotherapy: insights into cellular and tumor microenvironmental mechanisms of action. Front. Oncol. 2022;12:960317.
3. Wyld L., Audisio R.A., Poston G.J. The evolution of cancer surgery and future perspectives. Nat. Rev. Clin. Oncol. 2015;12(2):115–124.
4. Macdonald I.J., Dougherty T.J. Basic principles of photodynamic therapy. J. Porphyr. Phthalocyanines. 2001;05(02):105–129.
5. Mang T. S. Lasers and light sources for PDT: past, present and future. Photodiagnosis Photodyn. 2004;1(1):43–48.
6. Algorri J. F., Ochoa M., Roldán-Varona P., Rodríguez-Cobo L., López-Higuera J. M. Light technology for efficient and effective photodynamic therapy: a critical review. Cancers. 2021;13(14):3484.
7. Dong Y., Zhou G., Chen J., Shen L., Jianxin Z., Xu Q., Zhu Y. A new LED device used for photodynamic therapy in treatment of moderate to severe acne vulgaris. Photodiagnosis Photodyn. 2016;13:188–195.
8. Attili S. K., Lesar A., McNeill A., CamachoLopez M., Moseley H., Ibbotson S., et al. An open pilot study of ambulatory photodynamic therapy using a wearablelow-irradiance organic light-emitting diode light source in the treatment of nonmelanoma skin cancer. Br. J. Dermatol. 2009;161(1):170–173.
9. Hatakeyama T., Murayama Y., Komatsu S., Shiozaki A., Kuriu Y., Ikoma H., Nakanishi M., Ichikawa D., Fujiwara H., Okamoto K., Ochiai T., Kokuba Y., Inoue K., Nakajima M., Otsuji E. Efficacy of 5-aminolevulinic acid-mediated photodynamic therapy using light-emitting diodes in human colon cancer cells. Oncol. Rep. 2013;29(3):911–916.
10. Schmidt M.H., Bajic D.M., Reichert K.W., Martin T.S., Meyer G.A., Whelan H.T. Light-emitting diodes as a light source for intraoperative photodynamic therapy. Neurosurgery. 1996;38(3):552–557.
11. Szeimies R.M., Matheson R.T., Davis S.A., Bhatia A.C., Frambach Y., Klövekorn W., Fesq H., Berking C., Reifenberger J., Thaçi D. Topical methyl aminolevulinate photodynamic therapy using red light-emitting diode light for multiple actinic keratoses: a randomized study. Dermatol. Surg. 2009;35(4):586–592.
12. Lucky S.S., Soo K.C., Zhang Y. Nanoparticles in photodynamic therapy. Chem. Rev. 2015;115(4):1990–2042.
13. Moret F., Reddi E. Strategies for optimizing the delivery to tumors of macrocyclic photosensitizers used in photodynamic therapy (PDT). J. Porphyr. Phthalocyanines. 2017;21(04–06):239–256.
14. Pieslinger A., Plaetzer K., Oberdanner C.B., Berlanda J., Mair H., Krammer B., Kiesslich T. Characterization of a simple and homogeneous irradiation device based on light-emitting diodes: a possible low-cost supplement to conventional light sources for photodynamic treatment. Med. Laser Appl. 2006;21(4):277–283.
15. Chen D., Zheng H., Huang Z., Lin H., Ke Z., Xie S., Li B. Light-emitting diode-based illumination system for in vitro photodynamic therapy. Int. J. Photoenergy. 2012;2012(1): 920671.
16. Bajgar R., Pola M., Hosik J., Turjanica P., Cengery J., Kolarova H. New planar light source for the induction and monitoring of photodynamic processes in vitro. J. Biol. Phys. 2020;46(1):121–131.
17. Di Veroli G. Y., Fornari C., Goldlust I., Mills G., Koh S.B., Bramhall J.L., Richards F.M., Jodrell D.I. An automated fitting procedure and software for dose-response curves with multiphasic features. Sci. Rep. 2015;5(1):14701.
18. Kassis S., Grondin M., Averill-Bates D.A. Heat shock increases levels of reactive oxygen species, autophagy and apoptosis. BBA-Mol. Cell. Res. 2021;1868(3):118924.
19. Sobotta L., Skupin-Mrugalska P., Piskorz J., Mielcarek J. Porphyrinoid photosensitizers mediated photodynamic inactivation against bacteria. Eur. J. Med. Chem. 2019;175:72–106.
20. Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–674.
21. Nowis D., Makowski M., Stokłosa T., Legat M., Issat T., Gołab J. Direct tumor damage mechanisms of photodynamic therapy. Acta. Biochim. Pol. 2005;52(2):339–352.
Review
For citations:
Gudkova V.R., Gvozdev D.A., Tsoraev G.V., Moysenovich A.M., Maksimov E.G. High-power LED-based light source for photosensitizer efficiency assay against cell culture. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2024;79(4):306-314. (In Russ.) https://doi.org/10.55959/MSU0137-0952-16-79-4-5