Gel electrophoretic analysis of protein-DNA complexes to classify inhibitors of poly(ADP-ribose) polymerases 1 and 2
https://doi.org/10.55959/MSU0137-0952-16-79-4-10
Abstract
Poly(ADP-ribose) polymerases 1 and 2 (PARP1 and PARP2) play an important role in repairing DNA, and their inhibition is being used to treat certain oncological diseases. New inhibitors of PARP are being actively developed and the mechanisms of their action are being studied. In the present work, using the inhibitors talazoparib, olaparib and veliparib, as example, it is shown that electrophoresis of DNA complexes with PARP1 and PARP2 in polyacrylamide gel in the presence of inhibitors makes it possible to identify the effect of inhibitors on the affinity of enzymes to DNA, and after adding the NAD+ substrate, to evaluate the inhibition of the catalytic activity of enzymes. When selecting new inhibitors for biomedical research, it is important to consider these mechanisms of action against PARP1 and PARP2.
About the Authors
A. A. LobanovaRussian Federation
Lenin Hills 1, bldg. 12, Moscow, 119234
A. N. Korovina
Russian Federation
Lenin Hills 1, bldg. 12, Moscow, 119234
D. O. Koshkina
Russian Federation
Lenin Hills 1, bldg. 12, Moscow, 119234
P. A. Chernikova
Russian Federation
Lenin Hills 1, bldg. 12, Moscow, 119234
A. V. Feofanov
Russian Federation
Lenin Hills 1, bldg. 12, Moscow, 119234
V. M. Studitsky
Russian Federation
Lenin Hills 1, bldg. 12, Moscow, 119234
Cottman Avenue 333, Philadelphia, Philadelphia 19111-2497, USA
D. K. Nilov
Russian Federation
Lenin Hills 1, bldg. 40, 119992
N. V. Maluchenko
Russian Federation
Lenin Hills 1, bldg. 12, Moscow, 119234
References
1. Langelier M.F., Eisemann T., Riccio A.A., Pascal J.M. PARP family enzymes: regulation and catalysis of the poly(ADP-ribose) posttranslational modification. Curr. Opin. Struct. Biol. 2018;53:187–198.
2. Szanto M., Yelamos J., Bai P. Specific and shared biological functions of PARP2 – is PARP2 really a lil’ brother of PARP1? Expert. Rev. Mol. Med. 2024;3(26)e13.
3. Kutuzov M.M., Belousova E.A., Ilina E.S., Lavrik O.I. Impact of PARP1, PARP2 & PARP3 on the base excision repair of nucleosomal DNA. Mechanisms of genome protection and repair. Advances in experimental medicine and biology, vol 1241. Ed. D. Zharkov. Cham Springer, 2020:47–57.
4. Alemasova E.E., Lavrik O.I. Poly(ADP-ribosyl)ation by PARP1: reaction mechanism and regulatory proteins. Nucleic Acids Res. 2019;47(8):3811–3827.
5. Cohen M.S., Chang P. Insights into the biogenesis, function, and regulation of ADP-ribosylation. Nat. Chem. Biol. 2018;14(3):236–243.
6. Maluchenko N.V., Koshkina D.O., Feofanov A.V., Studitsky V.M., Kirpichnikov M.P. Poly(ADP-ribosyl) code functions. Acta Naturae. 2021;13(2):58–69.
7. Pan L., Penney J., Tsai L.H. Chromatin regulation of DNA damage repair and genome integrity in the central nervous system. J. Mol. Biol. 2014;426(20):3376–3388.
8. Ko H.L., Ren E.C. Functional aspects of PARP1 in DNA repair and transcription. Biomolecules. 2012:2(4):524–548.
9. Das B., Choudhury B., Kumar A., Jyoti Baruah V. Genomic instability and DNA repair in cancer. DNA: Damages and repair mechanisms. Ed. P. Behzadi. IntechOpen; 2021:189–202.
10. Pazzaglia S., Pioli C. Multifaceted role of PARP-1 in DNA repair and inflammation: Pathological and therapeutic implications in cancer and non-cancer diseases. Cells. 2019;9(1):41.
11. Frederick M.I., Abdesselam D., Clouvel A., Croteau L., Hassan S. Leveraging PARP-1/2 to target distant metastasis. Int. J. Mol. Sci. 2024;25(16):9032.
12. Spiegel J.O., Van Houten B., Durrant J.D. PARP1: structural insights and pharmacological targets for inhibition. DNA Repair (Amst.). 2021;103:103125.
13. Zandarashvili L., Langelier M.F., Velagapudi U.K., Hancock M.A., Steffen J.D., Billur R., Hannan Z.M., Wicks A.J., Krastev D.B., Pettitt S.J., Lord C.J., Talele T.T., Pascal J.M., Black B.E. Structural basis for allosteric PARP-1 retention on DNA breaks. Science. 2020;368(6486):eaax6367.
14. Langelier M.F., Lin X., Zha S., Pascal J.M.. Clinical PARP inhibitors allosterically induce PARP2 retention on DNA. Sci. Adv. 2023;9(12):eadf7175.8.
15. Rudolph J., Jung K., Luger K. Inhibitors of PARP: number crunching and structure gazing. Proc. Natl. Acad. Sci. U.S.A. 2022;119(11):e2121979119.
16. Malyuchenko N.V., Kotova E.Y., Kulaeva O.I., Kirpichnikov M.P., Studitsky V.M. PARP1 Inhibitors: antitumor drug design. Acta Naturae. 2015;7(3):27–37.
17. Velagapudi U.K., Langelier M.F., Delgado-Martin C., Diolaiti M.E., Bakker S., Ashworth A., Patel B.A., Shao X., Pascal J.M., Talele T.T. Design and synthesis of poly(ADP-ribose) polymerase inhibitors: impact of adenosine pocket-binding motif appendage to the 3-oxo-2,3-dihydrobenzofuran-7-carboxamide on potency and selectivity. J. Med. Chem. 2019;62(11):5330–5357.
18. Kaufman B., Shapira-Frommer R., Schmutzler R.K., Audeh M.W., Friedlander M., Balmaña J., Mitchell G., Fried G., Stemmer S.M., Hubert A., Rosengarten O., Steiner M., Loman N., Bowen K., Fielding A., Domchek S.M. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J. Clin. Oncol. 2015;33(3):244–250.
19. Harvey-Jones E., Raghunandan M., RobbezMasson L., et al. Longitudinal profiling identifies cooccurring BRCA1/2 reversions, TP53BP1, RIF1 and PAXIP1 mutations in PARP inhibitor-resistant advanced breast cancer. Ann. Oncol. 2024;35(4):364–380.
20. Murthy P., Muggia F. PARP inhibitors: clinical development, emerging differences, and the current therapeutic issues. Cancer Drug Resist. 2019;2(3):665–679.
21. Bruin M.A.C., Sonke G.S., Beijnen J.H., Huitema A.D.R. Pharmacokinetics and pharmacodynamics of PARP inhibitors in oncology. Clin. Pharmacokinet. 2022;61(12):1649–1675.
22. Loehr A., Hussain A., Patnaik A., Bryce A.H., et al. Emergence of BRCA reversion mutations in patients with metastatic castration-resistant prostate cancer after treatment with rucaparib. Eur. Urol. 2023;83(3):200–209.
23. Maluchenko N., Koshkina D., Korovina A., Studitsky V., Feofanov A. Interactions of PARP1 inhibitors with PARP1-nucleosome complexes. Cells. 2022;11(21):3343.
24. Kutuzov M.M., Khodyreva S.N., Ame J.C., Ilina E.S., Sukhanova M.V., Schreiber V., Lavrik O.I. Interaction of PARP-2 with DNA structures mimicking DNA repair intermediates and consequences on activity of base excision repair proteins. Biochimie. 2013;95(6):1208–1215.
25. Deeksha W., Abhishek S., Giri J., Rajakumara E. Regulation of PARP1 and its apoptotic variant activity by single-stranded DNA. FEBS J. 2023; 290(18):4533–4542.
26. Laspata N., Kaur P., Mersaoui S.Y., Muoio D., Liu Z.S., Bannister M.H., Nguyen H.D., Curry C., Pascal J.M., Poirier G.G., Wang H., Masson J.Y., Fouquerel E. PARP1 associates with R-loops to promote their resolution and genome stability. Nucleic Acids Res. 2023;51(5):2215–2237.
27. Andreeva T.V., Maluchenko N.V., Efremenko A.V., Lyubitelev A.V., Korovina A.N., Afonin D.A., Kirpichnikov M.P., Studitsky V.M., Feofanov A.V. Epigallocatechin gallate affects the structure of chromatosomes, nucleosomes and their complexes with PARP1. Int. J. Mol. Sci. 2023;24(18):14187.
28. Langelier M.F., Steffen J.D., Riccio A.A., McCauley M., Pascal J.M. Purification of DNA damage-dependent PARPs from E. coli for structural and biochemical analysis. Poly(ADP-Ribose) Polymerase. Methods in Molecular Biology, vol 1608. Ed. A. Tulin. N.Y.: Humana Press, 2017: 431–444.
29. Maluchenko N., Saulina A., Geraskina O., Kotova E., Korovina A., Feofanov A., Studitsky V. Zinc-dependent nucleosome reorganization by PARP2. bioRxiv. 2023.
30. Maluchenko N.V., Nilov D.K., Pushkarev S.V., Kotova E.Y., Gerasimova N.S., Kirpichnikov M.P., Langelier M.F., Pascal J.M., Akhtar M.S., Feofanov A.V., Studitsky V.M. Mechanisms of nucleosome reorganization by PARP1. Int. J. Mol. Sci. 2021;22(22):12127.
31. Chappidi N., Quail T., Doll S., Vogel L.T., Aleksandrov R., Felekyan S., Kuhnemuth R., Stoynov S., Seidel C.A.M., Brugues J., Jahnel M., Franzmann T.M., Alberti S. PARP1-DNA co-condensation drives DNA repair site assembly to prevent disjunction of broken DNA ends. Cell. 2024;187(4):945-961.e18.
32. Vasil’eva I., Moor N., Anarbaev R., Kutuzov M., Lavrik O. Functional roles of PARP2 in assembling proteinprotein complexes involved in base excision DNA repair. Int. J. Mol. Sci. 2021;22(9):4679.
33. Murai J., Huang S.Y., Das B.B., Renaud A., Zhang Y., Doroshow J.H., Ji J., Takeda S., Pommier Y. Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res. 2012;72(21):5588–5599.
34. Murai J. Targeting DNA repair and replication stress in the treatment of ovarian cancer. Int. J. Clin. Oncol. 2017;22:619–628.
35. Murai J., Huang S.Y., Renaud A., Zhang Y., Ji J., Takeda S., Morris J., Teicher B., Doroshow J.H., Pommier Y. Stereospecific PARP trapping by BMN 673 and comparison with olaparib and rucaparib. Mol. Cancer Ther. 2014;13(2):433–443.
Review
For citations:
Lobanova A.A., Korovina A.N., Koshkina D.O., Chernikova P.A., Feofanov A.V., Studitsky V.M., Nilov D.K., Maluchenko N.V. Gel electrophoretic analysis of protein-DNA complexes to classify inhibitors of poly(ADP-ribose) polymerases 1 and 2. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2024;79(4):322-329. (In Russ.) https://doi.org/10.55959/MSU0137-0952-16-79-4-10