Effective in vitro inhibition of herpes simplex virus type 1 replication by oligonucleotide-containing nanocomposites
https://doi.org/10.55959/MSU0137-0952-16-79-4-14
Abstract
The control of herpesvirus infections is a pressing public health issue because of the widespread prevalence of herpes simplex virus (HSV), which causes a variety of diseases ranging from mild primary skin lesions to severe and sometimes fatal encephalitis. The use of antisense oligonucleotides (ONs) to suppress HSV replication is a promising development in this field. To overcome one of the major obstacles in delivering ONs into cells, we have prepared nanocomposites, which are composed of antisense oligonucleotides immobilized on titanium dioxide nanoparticles in the form of anatase (Ans~ON). We have investigated the antiviral activity of several nanocomposites bearing oligonucleotides targeting different regions of the HSV-1 genome. Unmodified oligonucleotides and oligonucleotides with methylsulfonyl phosphoramidate internucleotide groups have been used in the work. The most effective nanocomposites reduced virus replication in the cell culture by 3–3.5 orders of magnitude. The selectivity index values of these nanocomposites have been evaluated as 90–110 in the postinfection mode.
Keywords
About the Authors
M. N. RepkovaRussian Federation
8 Lavrent’eva pr., Novosibirsk, 630090
V. F. Zarytova
Russian Federation
8 Lavrent’eva pr., Novosibirsk, 630090
O. Yu. Mazurkov
Russian Federation
Koltsovo, Novosibirsk region, 630559
N. A. Mazurkova
Russian Federation
Koltsovo, Novosibirsk region, 630559
E. V. Makarevich
Russian Federation
Koltsovo, Novosibirsk region, 630559
E. I. Filippova
Russian Federation
Koltsovo, Novosibirsk region, 630559
M. D. Nekrasov
Russian Federation
8 Lavrent’eva pr., Novosibirsk, 630090
M. S. Kupryushkin
Russian Federation
8 Lavrent’eva pr., Novosibirsk, 630090
A. S. Levina
Russian Federation
8 Lavrent’eva pr., Novosibirsk, 630090
References
1. Belikova A.M., Zarytova V.F., Grineva N.I. Synthesis of ribonucleosides and diribonucleoside phosphates containing 2-chloroethylamine and nitrogen mustard residues. Tetrahedron Lett. 1967;8(37):3557–3562.
2. Zamecnik P., Stephenson M. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc. Natl. Acad. Sci. U.S.A. 1978;75(1):280–284.
3. Amado D.A., Davidson B.L. Gene therapy for ALS: A review. Mol. Ther. 2021;29(12):3345–3358.
4. Kulkarni J.A., Witzigmann D., Chen S., Cullis P.R., van der Meel R. Lipid nanoparticle technology for clinical translation of siRNA therapeutics. Acc. Chem. Res. 2019;52(9):2435–2444.
5. Draper K.G., Ecker D.J., Mirabelli C.K., Crooke S.T. Oligonucleotide therapies for modulating the effects of herpesviruses. Patent US 6310044 B1, 2001;30.10.2001.
6. Eide K., Moerdyk-Schauwecker M., Stein D.A., Bildfell R., Koelle D.M., Jin L. Reduction of herpes simplex virus type-2 replication in cell cultures and in rodent models with peptide-conjugated morpholino oligomers. Antivir. Ther. 2010;15(8):1141–1149.
7. Moerdyk-Schauwecker M., Stein D.A., Eide K., Blouch R.E., Bildfell R., Iversen P., Jin L. Inhibition of HSV-1 ocular infection with morpholino oligomers targeting ICP0 and ICP27. Antiviral Res. 2009;84(2):131–141.
8. Weng Y., Huang Q., Li C., Yang Y., Wang X., Yu J., Huang Y., Liang X.J. Improved nucleic acid therapy with advanced nanoscale biotechnology. Mol. Ther. Nucleic Acids 2020;19(1):581–601.
9. Haghighi F.H., Mercurio M., Cerra S., Salamone T.A., Bianymotlagh R., Palocci C., Spica V.R., Fratoddi I. Surface modification of TiO 2 nanoparticles with organic molecules and their biological applications. J. Mater. Chem. B. 2023;11(11):2334–2366.
10. Chelobanov B.P., Repkova M.N., Bayborodin S.I., Ryabchikova E.I., Stetsenko D.A. Nuclear delivery of oligonucleotides via nanocomposites based on TiO2 nanoparticles and polylysine. Mol. Biol. (Mosс.). 2017;51(5):797–808.
11. Levina A.S., Repkova M.N., Shatskaya N.V., Zarytova V.F., Ismagilov Z.R., Shikina N.V., Zagrebelnyi S.N., Baiborodin S.I. Design of TiO2~DNA nanocomposites for penetration into cells. Russ. J. Bioorg. Chem. 2013;39(1):77–86.
12. Zharkov T.D., Markov O.V., Zhukov S.A., Khodyreva S.N., Kupryushkin M.S. Influence of combinations of lipophilic and phosphate backbone modifications on cellular uptake of modified oligonucleotides. Molecules. 2024;29(2):452.
13. Osano E., Kishi J., Takahashi Y. Phagocytosis of titanium particles and necrosis in TNF-alpha-resistant mouse sarcoma L929 cells. Toxicol. In Vitro. 2003;17(1):41–47.
14. Smee D.F., Morrison A.C., Barnard D.L., Sidwell R.W. Comparison of colorimetric and visual methods for determining anti-influenza (H1N1 and H3N2) virus activities and toxicities of compounds. J. Virol. Methods. 2002;106(1):71–79.
15. Levina A.S., Repkova M.N., Bessudnova E.V., Filippova E.I., Zarytova V.F. High antiviral effect of TiO2·PL-DNA nanocomposites targeted to conservative regions of (-)RNA and (+)RNA of influenza A virus in cell culture. Beilstein J. Nanotechnol. 2016;7(4):1166–1173.
16. Levina A., Repkova M., Shikina N., Ismagilov Z., Kupryushkin M., Pavlova A., Mazurkova N., Pyshnyi D., Zarytova V. Pronounced therapeutic potential of oligonucleotides fixed on inorganic nanoparticles against highly pathogenic H5N1 influenza A virus in vivo. Eur. J. Pharm. Biopharm. 2021;162:92–98.
17. Repkova M.N., Levina A.S., Ismagilov Z R., Mazurkova N.A., Mazurkov O.Ju., Zarytova V.F. Effective inhibition of newly emerged A/H7N9 virus with oligonucleotides targeted to conserved regions of the virus genome. Nucleic Acid Ther. 2021;31(6):436–442.
18. Repkova M.N., Levina A.S., Seryapina A.A., Shikina N.V., Bessudnova E.V., Zarytova V.F., Markel A.L. Toward gene therapy of hypertension: experimental study on hypertensive ISIAH rats. Biochemistry (Mosc.). 2017;82(4):454–457.
19. Shen X., Corey D.R. Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs. Nucleic Acids Res. 2018;46(4):1584–1600.
20. Levina A.S., Repkova M.N., Zarytova V.F. Therapeutic nucleic acids against Herpes simplex viruses (a review). Russ. J. Bioorg. Chem. 2023;49(6):1243–1262.
21. Shoji Y., Norimatsu M., Shimada J., Mizushima Y. Limited use of cationic liposomes as tools to enhance the antiherpetic activities of oligonucleotides in Vero cells infected with herpes simplex virus Type 1. Antisense Nucleic Acid Drug Dev. 1998;8(4):255–263.
22. Birch-Hirschfeld E., Knorre C.M., Stelzner A., Schmidtke M. Antiviral activity of antisense oligonucleotides against various targets of herpes simplex virus 1 (Hsv1) and Coxsackievirus B3 (Cvb3) genome. Nucleos. Nucleot. 1997;16(5–6):623–628.
23. Blumenfeld M., Meguenni S., Poddevin B., Vasseur M. Antisense oligonucleotides against herpes simplex virus types 1 and 2. Patent WO1995004141A1, 1995;09.02.1995.
24. Hoke G.D., Draper K., Freier S.M., Gonzalez C., Driver V.B., Zounes M.C., Ecker D.J. Effects of phosphorothioate capping on antisense oligonucleotide stability, hybridization and antiviral efficacy versus herpes simplex virus infection. Nucleic Acids Res. 1991;19(20):5743–5748.
25. Shoji Y., Ishige H., Tamura N., Iwatani W., Norimatsu M., Shimada J., Mizushima Y. Enhancement of anti-Herpetic activity of antisense phosphorothioate oligonucleotides 5’-end modified with geraniol. J. Drug Target. 1998;5(4):261–273.
26. Vinogradov S.V., Suzdaltseva Y., Alakhov V.Y., Kabanov A.V. Inhibition of herpes simplex virus 1 reproduction with hydrophobized antisense oligonucleotides. Biochem. Biophys. Res. Commun. 1994;203(2):959–966.
27. Miroshnichenko S.K., Patutina O.A., Burakova E.A., Chelobanov B.P., Fokina A.A., Vlassov V.V., Altman S., Zenkova M.A., Stetsenko D.A. Mesyl phosphoramidate antisense oligonucleotides as an alternative to phosphorothioates with improved biochemical and biological properties. Proc. Natl. Acad. Sci. U.S.A. 2019;116(4):1229–1234.
28. Kandasamy P., McClorey G., Shimizu M., et al. Control of backbone chemistry and chirality boost oligonucleotide splice switching activity. Nucleic Acids Res. 2022;50(10):5443–5466.
Review
For citations:
Repkova M.N., Zarytova V.F., Mazurkov O.Yu., Mazurkova N.A., Makarevich E.V., Filippova E.I., Nekrasov M.D., Kupryushkin M.S., Levina A.S. Effective in vitro inhibition of herpes simplex virus type 1 replication by oligonucleotide-containing nanocomposites. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2024;79(4):338-345. (In Russ.) https://doi.org/10.55959/MSU0137-0952-16-79-4-14