Dependence of the adaptation of the strain Glutamicibacter sp. SMB32 to high salinity environment depending on growth stage and temperature
https://doi.org/10.55959/MSU0137-0952-16-80-1-3
Abstract
The pool of compatible solutes of the strain Glutamicibacter sp. SMB32, phylogenetically closely related to the species Glutamicibacter halophytocola, was studied under high salinity conditions depending on the growth phase and temperature. In cells at the exponential growth phase, the intracellular amount of glutamate increased with an increase in the salinity of the medium to 5% NaCl, but at 8 and 10% NaCl it had an inverse relationship with the osmolarity of the cultivation medium. The pool of trehalose in the cells of the strain SMB32 increased with an increase in the salinity of the medium to 5% NaCl, but in the presence of 8 and 10% NaCl its intracellular amount did not change significantly. A positive correlation between the intracellular amount and the salinity of the medium in Glutamicibacter sp. SMB32 cells was found only for proline. In the cells grown to the stationary growth phase in a medium containing 5 and 10% NaCl, proline was not detected. At the same time, the content of trehalose in the cells increased. In this work, the effect of the combined action of abiotic factors on the synthesis of secondary metabolites by cells of bacteria of the genus Glutamicibacter was studied for the first time. It was shown that the simultaneous action of high osmotic pressure (5% NaCl) and elevated temperature (32°C) leads to an additive effect with respect to the compound, the synthesis of which they affect separately. Thus, in the cells of the SMB32 strain, a multiple increase in the synthesis of trehalose was noted, which is involved in the adaptation of cells both to the increased osmotic pressure of the medium and to the effect of high temperature. While the simultaneous action of abiotic factors did not affect the amount of proline in the cells. Our observations revealed that trehalose is critical for growth at high temperatures, and in the adaptation of the strain Glutamicibacter sp. SMB32 to high salt concentrations the leading role belongs to proline. The data obtained can be used for the development of methods for controlling the metabolic state of autochthonous bacteria of the genus Glutamicibacter by introducing solutions of compatible solutes with their ratio, selected taking into account the current abiotic factors.
Keywords
About the Authors
L. N. Anan’inaRussian Federation
13, Golev St., Perm, 614081.
A. A. Gorbunov
Russian Federation
3, Akademika Koroleva str., Perm, 614013.
E. A. Shestakova
Russian Federation
13, Golev St., Perm, 614081.
References
1. CHEN M., Xiao X., Wang P., Zeng X., Wang F. Arthrobacter ardleyensis sp. nov., isolated from Antarctic lake sediment and deep-sea sediment. Arch. Microbiol. 2005;183(4):301–305.
2. Irlinger F., Bimet F., Delettre J., Lefèvre M., Grimont P.A.D. Arthrobacter bergerei sp. nov. and Arthrobacter arilaitensis sp. nov., novel coryneform species isolated from the surfaces of cheeses. Int. J. Syst. Evol. Microbiol. 2005;55(1):457–462.
3. Feng W.-W., Wang T.-T., Bai J.-L., Ding P., Xing K., Jiang J.-H., Peng X., Qin S. Glutamicibacter halophytocola sp. nov., an endophytic actinomycete isolated from the roots of a coastal halophyte, Limonium sinense. Int. J. Syst. Evol. Microbiol. 2017;67(5):1120–1125.
4. Romaniuk K., Golec P., Dziewit L. Insight into the diversity and possible role of plasmids in the adaptation of psychrotolerant and metalotolerant Arthrobacter spp. to extreme Antarctic environments. Front. Microbiol. 2018;9:3144.
5. Das L, Deb S., Das S.K. Glutamicibacter mishrai sp. nov., isolated from the coral Favia veroni from Andaman Sea. Arch. Microbiol. 2020;202(4):733–745.
6. Roh S.W., Sung Y., Nam Y.-D., Chang H.-W., Kim K.-H., Yoon J.-H., Jeon C. O., Oh H.-M., Bae J.-W. Arthrobacter soli sp. nov., a novel bacterium isolated from wastewater reservoir sediment. J. Microbiol. 2008;46(1):40–44.
7. Ястребова О.В., Малышева А.А., Плотникова Е.Г. Галотолерантные бактерии рода Glutamicibacter – деструкторы терефталевой кислоты. Прикладная биохимия и микробиология. 2022;58(5):476–483.
8. Wang H.-F., Li L., Zhang Y.-G., Hozzein W.N., Zhou X.-K., Liu W.-H., Duan Y.-Q., Li W.-J. Arthrobacter endophyticus sp. nov., an endophytic actinobacterium isolated from root of Salsola affinis C. A. Mey. Int. J. Syst. Evol. Microbiol. 2015;65(7):2154–2160.
9. Qin S., Feng W.-W., Zhang Y.-J., Wang T.-T., Xiong Y.-W., Xing K. Diversity of bacterial microbiota of coastal halophyte Limonium sinense and amelioration of salinity stress damage by symbiotic plant growth-promoting actinobacterium Glutamicibacter halophytocola KLBMP 5180. Appl. Environ. Microbiol. 2018;84(19):e01533-18.
10. Xiong Y.-W., Gong Y., Li X.-W., Chen P., Ju X.-Y., Zhang C.-M., Yuan B., Lv Z.-P., Xing K., Qin S. Enhancement of growth and salt tolerance of tomato seedlings by a natural halotolerant actinobacterium Glutamicibacter halophytocola KLBMP 5180 isolated from a coastal halophyte. Plant Soil. 2019;445:307–322.
11. Nishu S.D., Hyun H.R., Lee T.K. Complete genome sequence of drought tolerant plant growth-promoting rhizobacterium Glutamicibacter halophytocola DR408. Korean J. Microbiol. 2019;55(3):300–302.
12. Ананьина Л.Н., Горбунов А.А., Шестакова Е.А., Пьянкова А.А., Плотникова Е.Г. Совместимые вещества, накапливаемые клетками штамма Glutamicibacter sp. SMB32 в ответ на действие абиотических факторов окружающей среды. Микробиология. 2023;92(5):490–499.
13. Galinski E.A. Compatible solutes of halophilic eubacteria: molecular principles, water-solute interaction, stress protection. Experientia. 1993;49(6):487–496.
14. Godard T., Zühlke D., Richter G., Wall M., Rohde M., Riedel K., Poblete-Castro I., Krull R., Biedendieck R. Metabolic rearrangements causing elevated proline and po- lyhydroxybutyrate accumulation during the osmotic adaptation response of Bacillus megaterium. Front. Bioeng. 2020;8:47.
15. Chodkowski J.L., Shade A. Exometabolite dyna- mics over stationary phase reveal strain-specific responses. mSystems. 2020;5(6):e00493-20.
16. Goude R., Renaud S., Bonnassie S., Bernard T., Blanco C. Glutamine, glutamate, and glucosylglycerate are the major osmotic solutes accumulated by Erwinia chrysanthemi Strain 3937. Appl. Environ. Microbiol. 2004;70(11):6535–6541.
17. Roder A., Hoffmann E., Hagemann M., Berg G. Synthesis of the compatible solutes glucosylglycerol and trehalose by salt-stressed cells of Stenotrophomonas strains. FEMS Microbiol. Lett. 2005;243(1):219–226.
18. Essendoubi M., Brhada F., Eljamali J.E., Filali-Maltouf A., Bonnassie S., Georgeault S., Blanco C., Jebbar M. Osmoadaptative responses in the rhizobia nodulating Acacia isolated from south-eastern Moroccan Sahara. Environ. Microbiol. 2007;9(3):603–611.
19. Saum S.H., Müller V. Growth phase-dependent switch in osmolyte strategy in a moderate halophile: ectoine is a minor osmolyte but major stationary phase solute in Halobacillus halophilus. Environ. Microbiol. 2008;10(3):716–726.
20. Anan’ina L.N., Kosheleva I.А., Plotnikova E.G. Bacterial consortium as a model for studying the response of the microbial community of the Verkhnekamsk salt mining region to combined pollution. Теоретическая и прикладная экология. 2022;2:116–123.
21. Plotnikova E.G., Anan’ina L.N., Krausova V.I., Ariskina E.V., Prisyazhnaya N.V., Lebedev A.T., Dema- kov V.A., Evtushenko L.I. Thalassospira permensis sp. nov., a new terrestrial halotolerant bacterium isolated from a naphthalene-utilizing microbial consortium. Microbiology. 2011;80(5):703–712.
22. Bernard T., Jebbar M., Rassouli Y., HimdiKabbab S., Hamelin J., Blanco C. Ectoine accumulation and osmotic regulation in Brevibacterium linens. J. Gen. Microbiol. 1993;139(1):129–136.
23. Лакин Г.Ф. Биометрия. Учебное пособие для университетов и педагогических институтов. М.: Высшая школа; 1973. 343 с.
24. Madkour M.A., Smith L.T., Smith G.M. Preferential osmolyte accumulation: a mechanism of osmotic stress adaptation in diazotrophic bacteria. Appl. Environ. Microbiol. 1990;56(9):2876–2881.
25. Brill J., Hoffmann T., Bleisteiner M., Bremer E. Osmotically controlled synthesis of the compatible solute proline is critical for cellular defense of Bacillus subtilis against high osmolarity. J. Bacteriol. 2011;193(19):5335–5346.
26. Frings E., Kunte H., Galinski E.A. Compatible so- lutes in representatives of the genera Brevibacterium and Corynebacterium: Occurrence of tetrahydropyrimidines and glutamine. FEMS Microbiology Letters. 1993;109(1):25–32.
27. Матвеева Н.И, Воронина Н.А., Борзенков И.А., Плакунов В.К., Беляев С.С. Состав и количественное содержание осмопротекторов в клетках нефтеокисляющих бактерий при разных условиях культивирования. Микробиология. 1997;66(1):32–37.
28. Anan’ina L.N, Gorbunov A.A., Pyankova A.A. Physiological response of the moderately halophilic psychrotolerant strain Chromohalobacter sp. N1 to salinity change and low temperature. Can. J. Microbiol. 2021;67(4):342–348.
29. Болтянская Ю.В., Деткова Е.Н., Шумский А.Н., Дулов Л.Е., Пушева М.А. Осмоадаптация у представителей галоалкалофильных бактерий из содовых озер. Микробиология. 2005;74(6):738–744.
30. Деткова Е.Н., Болтянская Ю.В. Связь между стратегией осмоадаптации, аминокислотным составом общего клеточного белка и свойствами некоторых ферментов галоалкалофильпых бактерий. Микробиология. 2006;75(3):312–319.
31. Friesen S., Fedotova M.V., Kruchinin S.E., Buchner R. Hydration and dynamics of l-glutamate ion in aqueous solution. Phys. Chem. Chem. Phys. 2021;23:1590–1600.
32. Daub C.D., Leung K., Luzar A. Structure of aqueous solutions of monosodium glutamate. J. Phys. Chem. 2009;113(21);7687–7700.
33. Pagnotta S.E., McLain S.E., Soper A.K., Bruni F., Ricci M.A. Water and trehalose: how much do they interact with each other. J. Phys. Chem B. 2010;114(14):4904–4908.
34. Dmitrieva O.A., Fedotova M.V., Buchner R. Evidence for cooperative Na+ and Cl− binding by strongly hydrated L-proline. Phys. Chem. Chem. Phys. 2017;19:20474–20483.
35. Zevenhuizen L.P. Levels of trehalose and glycogen in Arthrobacter globiformis under conditions of nutrient starvation and osmotic stress. Anton. Leeuw. Int. J. G. 1992;61(1):61–68.
36. Комарова Т.И., Коронелли Т.В., Тимохина Е.А. Роль низкомолекулярных азотистых соединений в осмотолерантности бактерий родов Rhodococcus и Arthrobacter. Микробиология. 2002;71(2):166–170.
37. Köcher S., Tausendschön M., Thompson M., Saum S.H., Müller V. Proline metabolism in the moderately halophilic bacterium Halobacillus halophilus: differential regulation of isogenes in proline utilization. Environ. Microbiol. Rep. 2011;3(4):443–448.
38. Hengge-Aronis R., Klein W., Lange R., Rimmele M., Boos W. Trehalose synthesis genes are controlled by the putative sigma factor encoded by rpoS and are involved in stationary-phase thermotolerance in Escherichia coli. J. Bacteriol. 1991;173(24):7918–7924.
39. Jaishankar J., Srivastava P. Molecular basis of stationary phase survival and applications. Front. Microbiol. 2017;8:2000.
40. Kumar N., Roy J.I. Effect of trehalose on protein structure. Protein Sci. 2009;18(1):24–36.
41. Liu W., Huang Z., He X., Jiang P., Huo X., Lu Z., Liu B. Impacts of trehalose and l-proline on the thermodynamic nonequilibrium phase change and thermal properties of normal saline. Cryobiology. 2020;96:92–98.
42. Pereira C.S., Lins R.D., Chandrasekhar I., Frei- tas L.C.G., Hunenberger P.H. Interaction of the disaccharide trehalose with a phospholipid bilayer: a molecular dynamics study. Biophys. J. 2004;86(4):2273–2285.
43. Ahlgren K., Olsson C., Ermilova I., Swenson J. New insights into the protein stabilizing effects of trehalose by comparing with sucrose. Phys. Chem. Chem. Phys. 2023;25(32):21215–21226.
44. Cánovas D., Fletcher S.A., Hayashi M., Csonka L.N. Role of trehalose in growth at high temperature of Salmonella enterica serovar typhimurium. J. Bacteriol. 2001;183(11):3365–3371.
45. Reina-Bueno M., Argandoña M., Salvador M., Rodríguez-Moya J., Iglesias-Guerra F., Csonka L.N., Nieto J.J., Vargas C. Role of trehalose in salinity and temperature tolerance in the model halophilic bacterium Chromohalobacter salexigens. PLoS One. 2012;7(3):e33587.
46. Reina-Bueno M., Argandoña M., Nieto J.J., Hidalgo-García A., Iglesias-Guerra F., Delgado M.J., Vargas C. Role of trehalose in heat and desiccation tolerance in the soil bacterium Rhizobium etli. BMC Microbiol. 2012;12:207.
47. Kandror O., DeLeon A., Goldberg A.L. Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. Proc. Natl. Acad. Sci. U.S.A. 2002;99(15):9727–9732.
Review
For citations:
Anan’ina L.N., Gorbunov A.A., Shestakova E.A. Dependence of the adaptation of the strain Glutamicibacter sp. SMB32 to high salinity environment depending on growth stage and temperature. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2025;80(1):18-25. (In Russ.) https://doi.org/10.55959/MSU0137-0952-16-80-1-3