Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

Hyperspectral monitoring of pesticide effects on Scots pine (Pinus sylvestris L.) seedlings irrigated with model coal mine wastewater

https://doi.org/10.55959/MSU0137-0952-16-80-1-4

Abstract

The treatment of quarry wastewater, as well as the reclamation of depleted coal mines, are serious environmental problems. One of the ways to solve them is phytoremediation using stress-resilient plants such as the common pine (Pinus sylvestris L.). To mitigate the risk of epiphytotics during mass cultivation, treatments with chemical pesticides are necessary. It is important to make sure that the pesticides do not harm plants when using quarry wastewater containing heavy metals for irrigation. In this regard, mass monitoring of plants by non-invasive methods is highly relevant. In this work, we used direct measurement methods and a non-invasive approach based on hyperspectral imaging to comprehensively monitor the condition of pine seedlings treated with the “Aktara” and “Previcur Energy” pesticides in different concentrations (single, double, and quadruple compared to the concentration recommended by the manufacturer) and irrigated with the solutions of mineral salts simulating the wastewater from coal mines. It is shown that, despite some methodological difficulties, it is possible to use hyperspectral images for non-invasive remote monitoring of the condition of coniferous seedlings in vegetation experiments, including in the field. It was found that the pesticide treatments exerted neither acute toxicity nor a pronounced negative effect on the growth rate and pigment composition of the pine seedlings during the two-month observation. At the same time, irrigation of these plants with model quarry wastewater also did not produce synergistic toxic effects. Thus, there are no obvious obstacles to the use of the above-mentioned pesticides for treatment of Scots pine seedlings irrigated with quarry wastewater containing Fe, Zn and Mn. The results obtained also support the use of wastewater rich in mineral nutrition elements but lacking highly toxic heavy metals (such as Pb and Cd), when growing plants for phytoremediation of soils from depleted coal mines. However, long-term, preferably multi-year studies are needed to assess long-term risks.

About the Authors

A. E. Solovchenko
Lomonosov Moscow State University, Department of Biology
Russian Federation

1–12, Leninskye gory, Moscow, 119234.



B. M. Shurygin
Lomonosov Moscow State University, Department of Biology
Russian Federation

1–12, Leninskye gory, Moscow, 119234.



I. O. Selyakh
Lomonosov Moscow State University, Department of Biology
Russian Federation

1–12, Leninskye gory, Moscow, 119234.



L. R. Semenova
Lomonosov Moscow State University, Department of Biology
Russian Federation

1–12, Leninskye gory, Moscow, 119234.



P. N. Scherbakov
Lomonosov Moscow State University, Department of Biology
Russian Federation

1–12, Leninskye gory, Moscow, 119234.



O. B. Chivkunova
Lomonosov Moscow State University, Department of Biology
Russian Federation

1–12, Leninskye gory, Moscow, 119234.



A. A. Lukyanov
Lomonosov Moscow State University, Department of Biology
Russian Federation

1–12, Leninskye gory, Moscow, 119234.



E. S. Mikhailova
Kemerovo State University, Institute of Nano-, Bio-, Information-, Cognitive- and Socio-humanitarian Technologies
Russian Federation

6, Krasnaya str., Kemerovo, 625000. 



V. A. Kryuk
Kemerovo State University, Institute of Nano-, Bio-, Information-, Cognitive- and Socio-humanitarian Technologies Krasnaya str.6, Kemerovo, 625000.
Russian Federation

6, Krasnaya str., Kemerovo, 625000. 



E. S. Lobakova
Lomonosov Moscow State University, Department of Biology
Russian Federation

1–12, Leninskye gory, Moscow, 119234.



References

1. Ray S., Dey K. Coal mine water drainage: the current status and challenges. J. Inst. Eng. (India): Ser. D. 2020;101(2):165–172.

2. Hudson-Edwards K.A., Jamieson H.E., Lottermoser B.G. Mine wastes: past, present, future. Elements. 2011;7(6):375–380.

3. Tchounwou P.B., Yedjou C.G., Patlolla A.K., Sutton D.J. Heavy metal toxicity and the environment. Mol. Clinic. Environ. Toxicol. 2012;3:133–164.

4. Lottermoser B.G. Recycling, reuse and rehabilitation of mine wastes. Elements. 2011;7(6):405–410.

5. Luptakova A., Ubaldini S., Macingova E., Fornari P., Giuliano V. Application of physical-chemical and bio- logical-chemical methods for heavy metals removal from acid mine drainage. Proc. Biochem. 2012;47(11):1633–1639.

6. Sincero A.P., Sincero G.A. Physical-chemical treatment of water and wastewater. CRC press: Boca Raton; 2002. 856 pp.

7. Priya A.K., Jalil A.A., Vadivel S., Dutta K., Rajendran S., Fujii M., Soto-Moscoso M. Heavy metal remediation from wastewater using microalgae: recent advances and future trends. Chemosphere. 2022;305:135375.

8. Manikandan A., Suresh Babu P., Shyamalagowri S., Kamaraj M., Muthukumaran P., Aravind J. Emerging role of microalgae in heavy metal bioremediation. J. Basic. Microbiol. 2022;62(3–4):330–347.

9. Solovchenko A., Selyakh I., Semenova L., Scherbakov P., Zaytseva A., Zaytsev P., Fedorenko T., Alam M.A., Jingliang X., Lukyanov A., Lobakova E. A local or a stranger? Comparison of autochthonous vs. allochthonous microalgae potential for bioremediation of coal mine drainage water. Chemosphere. 2024;365:143359.

10. Singh N., Gupta V.K., Kumar A., Sharma B. Synergistic effects of heavy metals and pesticides in living systems. Front. Chem. 2017;5:70.

11. Alengebawy A., Abdelkhalek S.T., Qureshi S.R., Wang M.-Q. Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics. 2021;9(3):42.

12. Kumar P., Singh J., Yadav V.K., Gautam K., Kumar M., Gupta R. Phenotyping in plant breeding using modern tools: a review. J. Adv. Biol. Biotechnol. 2024;27(11):200–212.

13. Ferreira L.D.C., Carvalho I.C.B., Jorge L.A.C., Quezado-Duval A.M., Rossato M. Hyperspectral imaging for the detection of plant pathogens in seeds: recent developments and challenges. Front. Plant. Sci. 2024;15:1387925.

14. Дейвис Ш.М., Ландгребе Д.А., Филлипс Т.Л., Ланженлауб Д.С., Сиева л.Р.Ф., Свейн Ф.Х., Хоффер Р.М. Дистанционное зондирование: количественный подход. М.: Недра; 1983. 415 c.

15. Zavafer A., Bates H., Mancilla C., Ralph P.J. Phenomics: conceptualization and importance for plant physio- logy. Trends Plant Sci. 2023;28(9):1004–1013.

16. Watt M., Fiorani F., Usadel B., Rascher U., Muller O., Schurr U. Phenotyping: new windows into the plant for breeders. Annu. Rev. Plant Biol. 2020;71(1):689–712.

17. Maraveas C. Image analysis artificial intelligence technologies for plant phenotyping: current state of the art. AgriEngineering. 2024;6(3):3375–3407.

18. Fu P., Meacham-Hensold K., Guan K., Wu J., Bernacchi C. Estimating photosynthetic traits from reflectance spectra: A synthesis of spectral indices, numerical inversion, and partial least square regression. Plant Cell Environ. 2020;43(5):1241–1258.

19. Perine J., Anderson J.C., Kruger G.R., AbiAkar F., Overmyer J. Effect of nozzle selection on deposition of thiamethoxam in Actara® spray drift and implications for off-field risk assessment. Sci. Tot. Environ. 2021;772:144808.

20. Ekabote S.D., Divyajyothi U., Narayanaswamy P., Ravindra H. Evaluation of propamocarb 530+ fosetyl 310-840 SL for the management of damping off of vegetables. J. Pharmacognos. Phytochem. 2019;8(1):1616–1618.

21. Shurygin B., Chivkunova O., Solovchenko O., Solovchenko A., Dorokhov A., Smirnov I., Astashev M., Khort D. Comparison of the non-invasive monitoring of fresh-cut lettuce condition with imaging reflectance hyperspectrometer and imaging PAM-fluorimeter. Photonics. 2021;8(10):425.

22. Gitelson A., Solovchenko A. Non-invasive quantification of foliar pigments: possibilities and limitations of reflectance-and absorbance-based approaches. J. Photochem. Photobiol. B: Biol. 2018;178:537–544.

23. Gitelson A., Solovchenko A. Generic algorithms for estimating foliar pigment content. Geophys. Res. Lett. 2017;44(18):9293–9298.

24. Horler D.N.H., Dockray M., Barber J. The red edge of plant leaf reflectance. Int. J. Rem. Sens. 2007;4(2):273–288.

25. De Carvalho O.A., Meneses P.R. Spectral correlation mapper (SCM): an improvement on the spectral angle mapper (SAM). Summaries of the 9th JPL airborne earth science workshop, vol. 9. no. 2. Pasadena: JPL publication; 2000:00-18.

26. Kruse F.A., Lefkoff A., Boardman J., Heideb- recht K., Shapiro A., Barloon P., Goetz A. The spectral image processing system (SIPS) — interactive visualization and analysis of imaging spectrometer data. Rem. Sens. Environ. 1993;44(2–3):145–163.

27. Ilija P. Previcur energy-advantages of the fungicide for the control of vegetable diseases. Zbornik predavanj in referatov, 8. Slovenskega postvetovanja o varstvu Rastlin, Ljubljana; 2007:59–64.

28. Solovchenko A., Dorokhov A., Shurygin B., Nikolenko A., Velichko V., Smirnov I., Khort D., Aksenov A., Kuzin A. Linking tissue damage to hyperspectral reflectance for non-invasive monitoring of apple fruit in orchards. Plants. 2021;10(2):310.

29. Rouchaud J., Moons C., Meyer J.A. Effects of pesticide treatments on the carotenoid pigments of lettuce. J. Agric. Food Chem. 1984;32(6):1241–1245.

30. Solovchenko A. Photoprotection in Plants: Optical Screening-based Mechanisms. Heidelberg; N.Y.: Springer; 2010. 170 pp.

31. Shurygin B., Smirnov I., Chilikin A., Khort D., Kutyrev A., Zhukovskaya S., Solovchenko A. Mutual augmentation of spectral sensing and machine learning for non-invasive detection of apple fruit damages. Horticulturae. 2022;8(12):1111.


Review

For citations:


Solovchenko A.E., Shurygin B.M., Selyakh I.O., Semenova L.R., Scherbakov P.N., Chivkunova O.B., Lukyanov A.A., Mikhailova E.S., Kryuk V.A., Lobakova E.S. Hyperspectral monitoring of pesticide effects on Scots pine (Pinus sylvestris L.) seedlings irrigated with model coal mine wastewater. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2025;80(1):26-35. (In Russ.) https://doi.org/10.55959/MSU0137-0952-16-80-1-4

Views: 34


ISSN 0137-0952 (Print)