Age-related changes in the tissue antioxidant system of the northern birch mouse (Sicista betulina, Rodentia) at the northern periphery of its habitat area
https://doi.org/10.55959/MSU0137-0952-16-80-2-2
Abstract
The study was aimed at determining tissue antioxidant levels in juvenile and adult the northern birch mouse (Sicista betulina Pallas, 1779) at the northern periphery of its range (Republic of Karelia). Our results are indicating a mixed pattern of age-related changes in the antioxidant defense system: aging was accompanied by a decrease the catalase activity in the kidneys as well as an increase in heart catalase activity and kidney, cardiac and skeletal muscle superoxide dismutase activity. The levels of low-molecular antioxidants – reduced glutathione (GSH) (kidneys and heart) and α-tocopherol (heart and skeletal muscle) were lower in the of the northern birch mouse young compared to adult animals, which is probably associated not only with the active growth and high mobility of the juvenile mouse during the dispersal period, but also with the stress of physiological systems due to living in the Northern conditions and preparing for hibernation. Higher levels of GSH and α-tocopherol were found in the hearts of adult northern birch mouse compared to other small mammal species of the order Rodentia living in the Republic of Karelia, which indicates the important role of low-molecular weight antioxidants in protecting tissues against oxidative injury in this species.
About the Authors
E. P. AntonovaRussian Federation
11 Pushkinskaya Street, Petrozavodsk, Karelia, 185910
V. A. Ilyukha
Russian Federation
33 Lenina Street, Petrozavodsk, 185910
Yaroslavl Oblast, Necouz Region, 152742
A. E. Yakimova
Russian Federation
11 Pushkinskaya Street, Petrozavodsk, Karelia, 185910
33 Lenina Street, Petrozavodsk, 185910
I. V. Baishnikova
Russian Federation
11 Pushkinskaya Street, Petrozavodsk, Karelia, 185910
T. N. Ilyina
Russian Federation
11 Pushkinskaya Street, Petrozavodsk, Karelia, 185910
References
1. Sohal R.S., Orr W.C. The redox stress hypothesis of aging. Free. Radic. Biol. Med. 2012;52(3):539–555.
2. Yang J., Luo J., Tian X., Zhao Y., Li Y., Wu X. Progress in understanding oxidative stress, aging, and aging-related diseases. Antioxidants (Basel). 2024;13(4):394.
3. Hindle A.G., Lawler J.M., Campbell K.L., et al. Muscle aging and oxidative stress in wild-caught shrews. Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol. 2010;155(4):427–434.
4. Andziak B., O’Connor T.P., Buffenstein R. Antioxidants do not explain the disparate longevity between mice and the longest-living rodent, the naked mole-rat. Mech. Ageing Dev. 2005;126(11):1206–1212.
5. Conde-Perezprina J.C., Luna-Lopez A., Gonzalez-Puertos V.Y., Zenteno-Savín T., León-Galván M.Á., Königsberg M. DNA MMR systems, microsatellite instability and antioxidant activity variations in two species of wild bats: Myotis velifer and Desmodus rotundus, as possible factors associated with longevity. Age. 2012;34(6):1473–1492.
6. Klichkhanov N.K., Nikitina E.R., Shihamirova Z.M., Astaeva M.D., Chalabov S.I., Krivchenko A.I. Erythrocytes of little ground squirrels undergo reversible oxidative stress during arousal from hibernation. Front. Physiol. 2021;12:730657.
7. Haase C.G., Fuller N.W., Hranac C.R., Hayman D.T.S., Olson S.H., Plowright R.K., McGuire L.P. Bats are not squirrels: revisiting the cost of cooling in hibernating mammals. J. Therm. Biol. 2019;81:185–193.
8. Ивантер Э.В. К популяционной экологии лесной мышовки (Sicista betulina Pall.) на северном пределе ареала. Сообщение II. Размножение, экологическая структура популяции, динамика численности. Принципы экологии. 2021;3(41):25–41.
9. Johansen K., Krog J. Diurnal body temperature variations and hibernation in the birch mouse, Sicista betulina. Am. J. Physiol. 1959;196(6):1200–1204.
10. Orr A.L., Lohse L.A., Drew K.L., Hermes-Lima M. Physiological oxidative stress after arousal from hibernation in Arctic ground squirrel. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2009;153(2):213–221.
11. Ivanter E.V. The reproductive ecology of the bank vole Myodes (Clethrionomys) Glareolus Schreb. In north periphery of its areal: I. sex cycles, course, dates, and intensive reproduction. Biol. Bull. 2020;47(5):535–547.
12. Okamoto I., Kayano T., Hanaya T., Arai S., Ikeda M., Kurimoto M. Up-regulation of an extracellular superoxide dismutase-like activity in hibernating hamsters subjected to oxidative stress in mid- to late arousal from torpor. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2006;144(1):47–56.
13. James R.S., Staples J.F., Brown J.C., Tessier S.N., Storey K.B. The effects of hibernation on the contractile and biochemical properties of skeletal muscles in the thirteenlined ground squirrel, Ictidomys tridecemlineatus. J. Exp. Biol. 2013;216(Pt. 14):2587–2594.
14. Yin Q., Ge H., Liao C.C., Liu D., Zhang S., Pan Y. Antioxidant defenses in the brains of bats during hibernation. PLoS One. 2016;11(3):e0152135.
15. Ilyina T.N., Baishnikova I.V., Belkin V.V. Retinol and α-tocopherol content in the liver and skeletal muscle of bats (Chiroptera) during hibernation and summer activity. J. Evol. Biochem. Phys. 2022;58(6):1697–1707.
16. Misra H.P., Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 1972;247(10):3170–3175.
17. Beers R.F., Sizer I.N. A spectral method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 1952;195(1):133–140.
18. Lowry O.H., Rosenbrough N.J., Farr A.L., Randall R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951;193(1):265–275.
19. Sedlak J., Lindsay R.H. Estimation of total, protein-bound and non-protein sulfhydryl groups in tissue with Ellman’s reagent. Anal. Biochem. 1968;25:192–205.
20. Скурихин В.Н., Двинская Л.М. Определение α-токоферола и ретинола в плазме крови сельскохозяйственных животных методом микроколоночной высокоэффективной жидкостной хроматографии. Сельскохозяйственная биология. 1989;4:127–129.
21. Ji L.L., Dillon D., Wu E. Alteration of antioxidant enzymes with aging in rat skeletal muscle and liver. Am. J. Physiol. 1990;258(4 Pt. 2):R918–R923.
22. Andziak B., O’Connor T.P., Qi W. et al. High oxidative damage levels in the longest living rodent, the naked mole-rat. Aging Cell. 2006;5(6):463–471.
23. Saldmann F., Viltard M., Leroy C., Friedlander G. The naked mole rat: a unique example of positive oxidative stress. Oxid. Med. Cell. Longev. 2019:4502819.
24. Aoyama K., Nakaki T. Glutathione in cellular redox homeostasis: association with the excitatory amino acid carrier 1 (EAAC1). Molecules. 2015;20(5):8742–8758.
25. Antonova E.P., Kalinina S.N., Yakimova A.E. et al. Antioxidant defenses in tissues of four species of Arvicolinae (Rodentia, Cricetidae). Biol. Bull. Russ. Acad. Sci. 2023;50(Suppl. 3):S428–S435.
26. Matsuo M., Gomi F., Dooley M.M. Age-related alterations in antioxidant capacity and lipid peroxidation in brain, liver, and lung homogenates of normal and vitamin E-deficient rats. Mech. Ageing Dev. 1992;64(3):273–292.
27. Ilyina T.N., Baishnikova I.V., Yakimova A.E., Zaitseva I.A. On the concentration of vitamins A and E in the tissues of the bank vole (Myodes (Clethrionomys) glareolus) and common shrew (Sorex araneus) inhabiting Karelia. Adv. Gerontol. 2024;14(1):21–27.
28. van Breukelen F., Martin S.L. The hibernation continuum: physiological and molecular aspects of metabolic plasticity in mammals. Physiology (Bethesda). 2015;30(4):273–281.
29. Антонова Е.П., Сергина С.Н., Илюха В.А., Якимова А.Е. Характеристика видовых и возрастных особенностей лактатдегидрогеназной системы в тканях грызунов (Mammalia: Rodentia). Труды Карельского научного центра РАН. 2018;4:3–12.
30. Anegawa D., Sugiura Y., Matsuoka Y., Sone M., Shichiri M., Otsuka R., Ishida N., Yamada K.I., Suematsu M., Miura M., Yamaguchi Y. Hepatic resistance to cold ferroptosis in a mammalian hibernator Syrian hamster depends on effective storage of diet-derived α-tocopherol. Commun. Biol. 2021;4(1):796.
31. Klichkhanov N.K., Ismailova Z.G., Astaeva M.D., Chalabov Sh.I. Effects of vitamins C and E on free radical processes in the blood of rats in acute moderate hypothermia. Biol. Bull. Russ. Acad. Sci. 2019;46:536–543.
32. McNab B.K. An analysis of the factors that influence the level and scaling of mammalian BMR. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2008;151(1):5–28.
33. Кухарева А.В. К экологии лесной мышовки (Sicista betulina Pall) на севере. Современные проблемы науки и образования. 2007;4:1–14.
34. Austad S.N. Diverse aging rates in metazoans: targets for functional genomics. Mech. Ageing Dev. 2005;126(1):43–49.
35. Lyman C.P., O’Brien R.C., Greene G.C., Papafrangos E.D. Hibernation and longevity in the Turkish hamster Mesocricetus brandti. Science. 1981;212(4495):668–670.
36. Brunet-Rossinni A.K., Austad S.N. Ageing studies on bats: a review. Biogerontology. 2004;5(4):211–222.
Review
For citations:
Antonova E.P., Ilyukha V.A., Yakimova A.E., Baishnikova I.V., Ilyina T.N. Age-related changes in the tissue antioxidant system of the northern birch mouse (Sicista betulina, Rodentia) at the northern periphery of its habitat area. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2025;80(2):80-88. (In Russ.) https://doi.org/10.55959/MSU0137-0952-16-80-2-2