Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

Molecular modeling of the methylene blue interaction with the SARS-CoV-2 coronavirus viroporin

https://doi.org/10.55959/MSU0137-0952-16-80-2-4

Abstract

Viroporins are small membrane proteins of enveloped viruses. They play an important role both in the life cycle of the virus and in the development of disease pathogenesis. In this regard, inhibition of viroporins is considered a promising strategy in the treatment of many diseases caused by enveloped viruses, such as coronavirus, herpes virus, human immunodeficiency virus, Ebola virus and many others. An important step in the search for highly effective inhibitors of such channels is the study of the interaction of potential antiviral drugs with the amino acid residues of the viroporin channel. In turn, methylene blue is a well-known effective antiviral agent and is widely used in medical practice. In this work, we carried out molecular dynamic calculations of the interaction of methylene blue with the viroporin channel of the SARS-CoV-2 coronavirus using the umbrella sampling method. Analysis of the contacts formed between the methylene blue molecule and the amino acid residues of viroporin showed that the key role in binding is played by non-covalent stacking interactions between the system of aromatic rings of methylene blue and the phenylalanine residues located in the center of the viroporin channel. The results obtained bring us closer to understanding the mechanisms of the antiviral action of methylene blue. Conducting such computational experiments seems to be an effective approach in the search for viroporin inhibitors.

About the Authors

E. P. Vasyuchenko
School of Biology, Lomonosov Moscow State University; Scientific and Educational Mathematical Center “Sofia Kovalevskaya Northwestern Center for Mathematical Research,” Pskov State University
Russian Federation

Leninskie gory 1–12, Moscow, 119234

 Lenin square 2, Pskov, 180000



E. G. Kholina
School of Biology, Lomonosov Moscow State University
Russian Federation

Leninskie gory 1–12, Moscow, 119234



V. A. Fedorov
School of Biology, Lomonosov Moscow State University
Russian Federation

Leninskie gory 1–12, Moscow, 119234



M. G. Strakhovskaya
School of Biology, Lomonosov Moscow State University
Russian Federation

Leninskie gory 1–12, Moscow, 119234



I. B. Kovalenko
School of Biology, Lomonosov Moscow State University
Russian Federation

Leninskie gory 1–12, Moscow, 119234



A. B. Rubin
School of Biology, Lomonosov Moscow State University
Russian Federation

Leninskie gory 1–12, Moscow, 119234



References

1. World Health Organization [Электронный ресурс]. 2025. URL: https://www.who.int/activities/prioritizingdiseases-for-research-and-development-in-emergencycontexts (дата обращения: 19.03.2025).

2. Peiris J.S.M., Lai S.T., Poon L.L.M., et al. Coronavirus as a possible cause of severe acute respiratory. The Lancet. 2003;361(9366):1319–1325.

3. de Groot R.J., Baker S.C., Baric R.S., et al. Commentary: Middle East respiratory syndrome coronavirus (MERS-CoV): Announcement of the coronavirus study group. J. Virol. 2013;87(14):7790–7792.

4. Zheng S., Fan J., Yu F., et al. Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January-March 2020: retrospective cohort study. BMJ. 2020;369:m1443.

5. Satarker S., Nampoothiri M. Structural proteins in severe acute respiratory syndrome coronavirus-2. Arch. Med. Res. 2020;51(6):482–491.

6. Li F. Structure, function, and evolution of coronavirus spike proteins. Annu. Rev. Virol. 2016;3(1):237–261.

7. Ou X., Liu Y., Lei X., et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat. Commun. 2020;11(1):1620.

8. Schoeman D., Fielding B.C. Coronavirus envelope protein: current knowledge. Virol. J. 2019;16(1):69.

9. Ravi V., Saxena S., Panda P.S. Basic virology of SARS-CoV 2. Indian J. Med. Microbiol. 2022;40(2):182–186.

10. Cao Y., Yang R., Wang W., Jiang S., Yang C., Liu N., Dai H., Lee I., Meng X., Yuan Z. Probing the formation, structure and free energy relationships of M protein dimers of SARS-CoV-2. Comput. Struct. Biotechnol. J. 2022;20:573–582.

11. Mahtarin R., Islam S., Islam M.dJ., Ullah M.O., Ali M.A., Halim M.A. Structure and dynamics of membrane protein in SARS-CoV-2. J. Biomol. Struct. Dyn. 2022;40(10):4725–4738.

12. Fedorov V., Kholina E., Khruschev S., Kovalenko I., Rubin A., Strakhovskaya M. Electrostatic map of the SARS-CoV-2 virion specifies binding sites of the antiviral cationic photosensitizer. Int. J. Mol. Sci. 2022;23(13):7304.

13. Poggio E., Vallese F., Hartel A.J.W., Morgenstern T.J., Kanner S.A., Rauh O., Giamogante F., Barazzuol L., Shepard K.L., Colecraft H.M., Clarke O.B., Brini M., Calì T. Perturbation of the host cell Ca2+ homeostasis and ER-mitochondria contact sites by the SARS-CoV-2 structural proteins E and M. Cell Death Dis. 2023;14(4):297.

14. Breitinger U., Farag N.S., Sticht H., Breitinger H.G. Viroporins: Structure, function, and their role in the life cycle of SARS-CoV-2. Int. J. Biochem. Cell Biol. 2022;145:106185.

15. Surya W., Tavares-Neto E., Sanchis A., Queralt-Martín M., Alcaraz A., Torres J., Aguilella V. The complex proteolipidic behavior of the SARS-CoV-2 envelope protein channel: weak selectivity and heterogeneous oligomerization. Int. J. Mol. Sci. 2023;24(15):12454.

16. Verdiá-Báguena C., Aguilella V.M., Queralt-Mar tín M., Alcaraz A. Transport mechanisms of SARS-CoV-E viroporin in calcium solutions: Lipid-dependent anomalous mole fraction effect and regulation of pore conductance. Biochim. Biophys Acta BBA – Biomembr. 2021;1863(6):183590.

17. De Diego M.L., Álvarez E., Almazán F., Rejas M.T., Lamirande E., Roberts A., Shieh W.-J., Zaki S.R., Subbarao K., Enjuanes L. A Severe acute respiratory syndrome coronavirus that lacks the E gene is attenuated in vitro and in vivo. J. Virol. 2007;81(4):1701–1013.

18. Siu Y.L., Teoh K.T., Lo J., Chan C.M., Kien F., Escriou N., Tsao S.W., Nicholls J.M., Altmeyer R., Peiris J.S.M., Bruzzone R., Nal B. The M, E, and N structural proteins of the severe acute respiratory syndrome coronavirus are required for efficient assembly, trafficking, and release of virus-like particles. J. Virol. 2008;82(22):11318–11330.

19. Fischer F., Stegen C.F., Masters P.S., Samsonoff W.A. Analysis of constructed E gene mutants of mouse Hepatitis virus confirms a pivotal role for E protein in coronavirus assembly. J. Virol. 1998;72(10):7885–7894.

20. Ruch T.R., Machamer C.E. The coronavirus E protein: assembly and beyond. Viruses. 2012;4(3):363–382.

21. Wang W.A., Carreras-Sureda A., Demaurex N. SARS-CoV-2 infection alkalinizes the ERGIC and lysosomes through the viroporin activity of the viral envelope protein. J. Cell Sci. 2023;136(6):jcs260685.

22. Miura K., Suzuki Y., Ishida K., Arakawa M., Wu H., Fujioka Y., Emi A., Morita E. Distinct motifs in the E protein are required for SARS-CoV-2 virus particle formation and lysosomal deacidification in host cells. J. Virol. 2023;97(10):e00426-23.

23. Kovalenko I., Kholina E., Fedorov V., Khruschev S., Vasyuchenko E., Meerovich G., Strakhovskaya M. Interaction of methylene blue with severe acute respiratory syndrome coronavirus 2 envelope revealed by molecular modeling. Int. J. Mol. Sci. 2023;24(21):15909.

24. Srinivasan S., Cui H., Gao Z., Liu M., Lu S., Mkandawire W., Narykov O., Sun M., Korkin D. Structural genomics of SARS-CoV-2 indicates evolutionary conserved functional regions of viral proteins. Viruses. 2020;12(4):360.

25. Feng S., Park S., Choi Y.K., Im W. CHARMM-GUI Membrane Builder : past, current, and future developments and applications. J. Chem. Theory Comput. 2023;19(8):2161–2185.

26. Wang J., Wang W., Kollman P.A., Case D.A. Antechamber, an accessory software package for molecular mechanical calculations. J. Am. Chem. Soc. 2001;222(1):2001.

27. Páll S., Zhmurov A., Bauer P., Abraham M., Lundborg M., Gray A., Hess B., Lindahl E. Heterogeneous parallelization and acceleration of molecular dynamics simulations in GROMACS. J. Chem. Phys. 2020;153(13):134110.

28. Tribello G.A., Bonomi M., Branduardi D., Camilloni C., Bussi G. PLUMED 2: New feathers for an old bird. Comput. Phys. Commun. 2014;185(2):604–613.

29. Kumar S., Rosenberg J.M., Bouzida D., Swendsen R.H., Kollman P.A. The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comput. Chem. 1992;13(8):1011–1021.

30. Grossfield A. An implementation of WHAM: the Weighted Histogram Analysis Method Version 2.0.10. Analysis. 2004;1–13.

31. De Lano W. The PyMOL Molecular Graphics System. Schrödinger, L.L.C. [Электронный ресурс]. 2025. URL: https://pymol.org/ (дата обращения: 19.03.2025).

32. BIOVIA Discovery Studio. Dassault Systèmes. [Электронный ресурс]. 2025. URL: https://discover.3ds.com/discovery-studio-visualizer-download (дата обращения: 19.03.2025).

33. Eickmann M., Gravemann U., Handke W., Tolksdorf F., Reichenberg S., Müller T.H., Seltsam A. Inactiva tion of Ebola virus and Middle East respiratory syndrome coronavirus in platelet concentrates and plasma by ultraviolet C light and methylene blue plus visible light, respectively. Transfusion. 2018;58(9):2202–2207.

34. Zhukhovitsky V., Shevlyagina N., Zubasheva M., Russu L., Gushchin V., Meerovich G., Strakhovskaya M. Infectivity and morphology of bovine coronavirus inactivated in vitro by cationic photosensitizers. Viruses. 2022;14(5):1053.

35. Cagno V., Medaglia C., Cerny A., Cerny T., Zwygart A.C.A., Cerny E., Tapparel C. Methylene Blue has a potent antiviral activity against SARS-CoV-2 and H1N1 influenza virus in the absence of UV-activation in vitro. Sci. Rep. 2021;11(1):14295.

36. Breitinger U., Farag N.S., Sticht H., Breitinger H.G. Viroporins: Structure, function, and their role in the life cycle of SARS-CoV-2. Int. J. Biochem. Cell Biol. 2022;145:106185.

37. Georgiou K., Kolokouris D., Kolocouris A. Molecular biophysics and inhibition mechanism of influenza virus A M2 viroporin by adamantane-based drugs – Challenges in designing antiviral agents. J. Struct. Biol. X. 2025;11:100122.

38. Torres J., Maheswari U., Parthasarathy K., Ng L., Liu D.X., Gong X. Conductance and amantadine binding of a pore formed by a lysine-flanked transmembrane domain of SARS coronavirus envelope protein. Protein Sci. 2007;16(9):2065–2071.


Review

For citations:


Vasyuchenko E.P., Kholina E.G., Fedorov V.A., Strakhovskaya M.G., Kovalenko I.B., Rubin A.B. Molecular modeling of the methylene blue interaction with the SARS-CoV-2 coronavirus viroporin. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2025;80(2):96-104. (In Russ.) https://doi.org/10.55959/MSU0137-0952-16-80-2-4

Views: 7


ISSN 0137-0952 (Print)