Ecto-ATPases, morphometry and heat production activity of erythrocytes of cartilaginous and teleost fishes of the Black Sea
https://doi.org/10.55959/MSU0137-0952-16-80-2-8
Abstract
The activity of ecto-ATPase and the size characteristics of erythrocytes in two species of cartilaginous and ten species of bony fishes, as well as the heat-production activity of the erythrocyte suspension in Scorpaena porcus and Raja clavata were studied. It was shown that the activity of ecto-ATPase of red blood cells (RBC) between cartilaginous fishes differs by 1.5 times and is 3.1 nmol Fn/min/μl RBC in Raja clavata, and 2.1 nmol Fn/min/μl RBC in Dasyatis pastinaca. Erythrocytes of teleost fish are characterized by a more significant variability of ecto-ATPase activity, which differed between its extreme values by more than 60 times (in Scorpaena porcus it was 6.4 nmol Fn/min/μl RBC, in Spicara flexuosa and some other species – 0.1 nmol Fn/min/μl RBC). When comparing the size characteristics of erythrocytes and the values of ecto-ATPase activity, a direct relationship was shown between these indicators. A study of heat production in suspensions of thresher and scorpionfish erythrocytes showed that adding ATP to a suspension of isolated cells (1 mg/ml) significantly increased the temperature in the experimental cell. The erythrocytes of the thresher and scorpionfish demonstrated different heat generation dynamics. Thus, ΔT generated by stingray erythrocytes was almost two times lower than in scorpionfish erythrocytes. The total duration of the heat generation process to the maximum ΔT in the thresher erythrocyte suspension was almost four times shorter than in the thresher. However, the process of temperature reduction in the thresher erythrocyte suspension occurred more than two times slower than in the thresher. The results obtained showed that ecto-ATPases of fish erythrocytes apparently function as a source of local heat generation on the erythrocyte surface and, thus, can be deeply integrated into the functioning of the cell membrane and the entire blood flow as a whole.
About the Authors
Yu. A. SilkinRussian Federation
Nauki st., 24, Kurortnoye settlement, Feodosia, 298188
M. Yu. Silkin
Russian Federation
Nauki st., 24, Kurortnoye settlement, Feodosia, 298188
E. N. Silkina
Russian Federation
Nauki st., 24, Kurortnoye settlement, Feodosia, 298188
S. O. Omelchenko
Russian Federation
pr. Vernadskogo, 4, Simferopol, 295007
References
1. Венкстерн Т.В., Энгельгардт В.А. Поверхностнолокализованная аденозин-полифосфатаза ядерных эритроцитов. Докл. Акад. наук СССР. 1955;102(1):133–136.
2. Венкстерн Т.В., Энгельгардт В.А. Распространение экто-аденозилполифосфатазы и характеристика некоторых ее свойств. Биохимия. 1957;22(5):911–916.
3. Bencic D.C., Yates T.J., Ingermann R.L. Ecto – ATPase activity of vertebrate blood cells. Physiol. Zool. 1997;70(6):621–630.
4. González-Alonso J., Olsen D. B., Saltin B. Erythrocyte and the regulation of human skeletal muscle blood flow and oxygen delivery. Role of circulating ATP. Circ. Res. 2002;91(11):1046–1055.
5. Jensen F.B., Agnisola C., Novak I. ATP release and extracellular nucleotidase activity in erythrocytes and coronary circulation of rainbow trout. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2009;152(3):351–356.
6. Пищенко Е.В. Гематология пресноводных рыб. Новосибирск: Новосиб. Гос. Аграр. Ун-т; 2002. 48 с.
7. Girish V., Vijavalakshmi A. Affordable image analysis using NIH Image/Image. Indian J. Cancer. 2004;41(1):41–47.
8. Acharya G., Mohanty P.K., Comparative cetomorphometry of red blood cells of some fishes. African J. Biol. Sci. 2019;1(1):23–32
9. Казеннов А.М., Маслова М.Н., Савина Г.В. Сравнительная характеристика свойств Na+, K+- АТФазы эритроцитов человека и карпа Cyprinus carpio. Ж. эвол. биохим. физиол. 1984;20(2):167–173.
10. Казеннов А.М., Маслова М.Н. Особенности активации детергентами Na, K-аденозинтрифосфатазы головного мозга позвоночных. Ж. эвол. биохим. физиол. 1980;16(5):430–436.
11. Chen P.S., Toribara T.Y., Warner H. Microdetermination of phosphorus. Anal. Chem. 1956;28(11):1756–1758.
12. Stolbov A.Y., Mishurov V.G., Shadrin N.V. The macrocalorimetric method in hydrobiology: description of the pilot device. Mar. Ecol. 2009;77(3):94–96.
13. Mann T. Studies on the metabolism of semen. Biochem. J. 1945;39(5):451–458.
14. Rothstein A., Meier R. The relationship of the cell surface to metabolism I Phosphatases in the cell surface of living yeast cells. J. Comp. Cell. Physiol. 1948; 32(1) :77–95.
15. Sprague R.S., Stephenson A.H., Ellsworth M.L. Red not dead: signaling in and from erythrocytes. Trends Endocrinol. Metab. 2007;18(9):350–355.
16. Силкин Ю.А., Силкина Е.Н., Силкин М.Ю. Влияние солей азида фторида, ортованадата и ЭДТА натрия на экто-АТФазную активность эритроцитов скорпены (Scorpaena porcus L.) и морской лисицы (Raja clavata L.). Ж. эвол. биохим. физиол. 2021;57(5):380–391.
17. Glomski C.A., Tamburlin J., Hard R., Chatnani M. The phylogenetic odyssey of erythrocyte IV. The amphibians. Hystol. Hystopathol. 1997;12(1):147–170.
18. Лисничая Е.Н., Ефимов В.Г. Особенности исследования морфологического состава крови рептилий. Науково-технiчний бюллетень НОЦ бiобезпеки та екологiчного контролю ресурсiв АПК. 2014;2(1):1–13.
19. Zimmermann H., Zebisch M., Strater N. Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal. 2012;8(3):437–502.
20. Yegutkin G.G. Enzymes involved in metabolism of extracellular nucleotides and nucleosides: Functional implications and measurement of activities. Crit. Rev. Biochem. Mol. Biol. 2014;49(6):473–497.
21. Кребс Е.М. Липиды клеточных мембран. Л.: Наука. 1981. 339 с.
22. Забеленский С.А., Чеботарева М.А., Шуколюкова Е.П., Никитина Е.Р., Кривченко А.И. Жирнокислотный состав фосфолипидов эритроцитов крысы при стрессе (длительное плавание). Ж. эвол. биохим. физиол. 2019;55(1):37–42.
23. Wan J., Ristenpart W. D., Stone H.A. Dynamics of shear-induced ATP release from red blood cells. Proc. Natl. Acad. Sci. U.S.A. 2008;105(43):16432–16437.
24. Aloni B., Shinitzky M., Livne A. Dynamics of erythrocyte lipids in intact cells, in ghost membranes and in liposomes. Biochim. Biophys. Acta. 1974;348(3):438–441.
25. Katiukhin L. N. About of mechanism of the Fahraeus-Lindquist-effec. J. Blood Disorders Transf. 2014;5(5):211–213.
26. Dickson K.A., Craham J. B. Evolution consequences of endothermy in fishes. Physiol. Biochem. Zool. 2004;77(6):998–1018.
27. Dolton H.R., Jackson A.L., Deavill R., Hall J., Hall G., McManus G.,Perkins M.W., Rolfe R.A., Snelling E.P., Houghton J.D.R., Sims D.W., Payne N.L. Regionally endothermic traits in planktivorous basking sharks Cetorhinus maximus. Endang. Species Res. 2023;51(2): 227–232.
28. Wegner N.C., Snodgrass O.E., Dewar H., Hyde J.R. Whole-body endothermy in a mesopelagic fish, the opah, Lampris guttatus. Science. 2015;348(6236):786–789.
Review
For citations:
Silkin Yu.A., Silkin M.Yu., Silkina E.N., Omelchenko S.O. Ecto-ATPases, morphometry and heat production activity of erythrocytes of cartilaginous and teleost fishes of the Black Sea. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2025;80(2):119-129. (In Russ.) https://doi.org/10.55959/MSU0137-0952-16-80-2-8