Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

Signaling role of selected mitochondrial metabolites in the regulation of mitochondrial homeostasis

https://doi.org/10.55959/MSU0137-0952-16-80-3-7

Abstract

This review systematizes contemporary data on the signaling role of mitochondrial metabolites in regulating mitochondrial homeostasis, with an emphasis on their influence on cellular adaptation to stress factors, including age-related changes. Mitochondria function not only as energy sources but also as key sensors and regulators, mediating anterograde and retrograde signaling through metabolites such as citrate, succinate, lactate, and L-carnitine. Citrate and succinate participate in epigenetic modifications, including protein acetylation and succinylation, thereby influencing gene expression and metabolic adaptation, with potential applications in the therapy of oncological and age-associated diseases. Lactate, traditionally regarded as a product of anaerobic metabolism, acts as a signaling molecule that modulates receptor cascades (GPR81), histone lactylation, and oxidative phosphorylation in mitochondria. L-Carnitine ensures metabolic flexibility by maintaining the acyl-CoA/CoA balance, removing toxic metabolites, and enhancing nitric oxide bioavailability, demonstrating its protective effects in models of hyperhomocysteinemia and NO deficiency. Understanding these mechanisms opens up prospects for the identification of biomarkers of mitochondrial dysfunction and the development of therapeutic strategies aimed at restoring homeostasis in the context of aging, metabolic disorders, and gerontological syndromes.

About the Authors

V. I. Zvyagina
Department of Biological Chemistry, Ryazan State Medical University
Russian Federation

 

9 Vysokovoltnaya St., Ryazan, 390026



A. M. Shitikova
Department of Biological Chemistry, Ryazan State Medical University; All-Russian Research Institute of Horse Breeding
Russian Federation

9 Vysokovoltnaya St., Ryazan, 390026

20 Divovo, Ryazan Region, 391105



M. M. Atroshchenko
All-Russian Research Institute of Horse Breeding
Russian Federation

20 Divovo, Ryazan Region, 391105



Yu. A. Marsyanova
Department of Biological Chemistry, Ryazan State Medical University; All-Russian Research Institute of Horse Breeding
Russian Federation

9 Vysokovoltnaya St., Ryazan, 390026

20 Divovo, Ryazan Region, 391105



E. S. Belskikh
Professor V.Ya. Garmash Department of Faculty Therapy, Ryazan State Medical University
Russian Federation

9 Vysokovoltnaya St., Ryazan, 390026



D. O. Melnikov
Professor V.Ya. Garmash Department of Faculty Therapy, Ryazan State Medical University
Russian Federation

9 Vysokovoltnaya St., Ryazan, 390026



References

1. Picard M., Shirihai O.S. Mitochondrial signal transduction. Cell Metab. 2022;34(11):1620–1653.

2. Arnold P.K., Finley L.W.S. Regulation and function of the mammalian tricarboxylic acid cycle. J. Biol. Chem. 2023;299(2):102838.

3. Collier J.J., Oláhová M., McWilliams T.G., Taylor R.W. Mitochondrial signalling and homeostasis: from cell biology to neurological disease. Trends Neurosci. 2023;46(2):137–152.

4. Suomalainen A., Nunnari J. Mitochondria at the crossroads of health and disease. Cell. 2024;187(11):2601–2627.

5. Sun N., Youle R.J., Finkel T. The mitochondrial basis of aging. Mol. Cell. 2016;61(5):654–666.

6. Behl T., Makkar R., Anwer M.K., Hassani R., Khuwaja G., Khalid A., Mohan S., Alhazmi H.A., Sachdeva M., Rachamalla M. Mitochondrial dysfunction: A cellular and molecular hub in the pathology of metabolic diseases and infection. J. Clin. Med. 2023;12(8):2882.

7. Walker B.R., Moraes C.T. Nuclear-mitochondrial interactions. Biomolecules. 2022;12(3):427.

8. Saki M., Prakash A. DNA damage related crosstalk between the nucleus and mitochondria. Free Radic. Biol. Med. 2017;107:216–227.

9. Rius-Pérez S., Torres-Cuevas I., Millán I., Ortega Á.L., Pérez S. PGC-1α, inflammation, and oxidative stress: An integrative view in metabolism. Oxid. Med. Cell. Longev. 2020;2020:1452696.

10. Jazwinski S.M., Kriete A. The yeast retrograde response as a model of intracellular signaling of mitochondrial dysfunction. Front. Physiol. 2012;3:139.

11. Zhang X., Gao Y., Zhang S., Wang Y., Pei X., Chen Y., Zhang J., Zhang Y., Du Y., Hao S., Wang Y., Ni T. Mitochondrial dysfunction in the regulation of aging and aging-related diseases. Cell Commun. Signal. 2025;23(1):290.

12. Yang J., Zhou R., Ma Z. Autophagy and energy metabolism. Adv. Exp. Med. Biol. 2019;1206:329–357.

13. Matilainen O., Quirós P.M., Auwerx J. Mitochondria and epigenetics – crosstalk in homeostasis and stress. Trends Cell Biol. 2017;27(6):453–463.

14. Icard P., Coquerel A., Wu Z., Gligorov J., Fuks D., Fournel L., Lincet H., Simula L. Understanding the central role of citrate in the metabolism of cancer cells and tumors: An update. Int. J. Mol. Sci. 2021;22(12):6587.

15. Martínez-Reyes I., Chandel N.S. Mitochondrial TCA cycle metabolites control physiology and disease. Nat. Commun. 2020;11(1):102.

16. Yang Y., Gibson G.E. Succinylation links metabolism to protein functions. Neurochem. Res. 2019;44(10):2346–2359.

17. Chen H., Xu H., Potash S., Starkov A., Belousov V.V., Bilan D.S., Denton T.T., Gibson G.E. Mild metabolic perturbations alter succinylation of mitochondrial proteins. J. Neurosci. Res. 2017;95(11):2244–2252.

18. Hansen G.E., Gibson G.E. The α-ketoglutarate dehydrogenase complex as a hub of plasticity in neurodegeneration and regeneration. Int. J. Mol. Sci. 2022;23(20):12403.

19. Brooks G.A. Lactate as a fulcrum of metabolism. Redox Biol. 2020;35:101454.

20. Hussien R., Brooks G.A. Mitochondrial and plasma membrane lactate transporter and lactate dehydrogenase isoform expression in breast cancer cell lines. Physiol. Genomics. 2011;43(5):255–264.

21. Glancy B., Kane D.A., Kavazis A.N., Goodwin M.L., Willis W.T., Gladden L.B. Mitochondrial lactate metabolism: history and implications for exercise and disease. J. Physiol. 2021;599(3):863–888.

22. Brown T.P., Ganapathy V. Lactate/GPR81 signaling and proton motive force in cancer: Role in angiogenesis, immune escape, nutrition, and Warburg phenomenon. Pharmacol. Ther. 2020;206:107451.

23. Zhang D., Tang Z., Huang H., et al. Metabolic regulation of gene expression by histone lactylation. Nature. 2019;574(7779):575–580.

24. Varner E.L., Trefely S., Bartee D., von Krusenstiern E., Izzo L., Bekeova C., O’Connor R.S., Seifert E.L., Wellen K.E., Meier J.L., Snyder N.W. Quantification of lactoyl-CoA (lactyl-CoA) by liquid chromatography mass spectrometry in mammalian cells and tissues. Open Biol. 2020;10(9):200187.

25. Latham T., Mackay L., Sproul D., Karim M., Culley J., Harrison D.J., Hayward L., Langridge-Smith P., Gilbert N., Ramsahoye B.H. Lactate, a product of glycolytic metabolism, inhibits histone deacetylase activity and promotes changes in gene expression. Nucleic Acids Res. 2012;40(11):4794–4803.

26. Amorim J.A., Coppotelli G., Rolo A.P., Palmeira C.M., Ross J.M., Sinclair D.A. Mitochondrial and metabolic dysfunction in ageing and age-related diseases. Nat. Rev. Endocrinol. 2022;18(4):243–258.

27. Virmani M.A., Cirulli M. The role of L-carnitine in mitochondria, prevention of metabolic inflexibility, and disease initiation. Int. J. Mol. Sci. 2022;23(5):2717.

28. Liepinsh E., Makrecka-Kuka M., Makarova E., Volska K., Svalbe B., Sevostjanovs E., Grinberga S., Kuka J., Dambrova M. Decreased acylcarnitine content improves insulin sensitivity in experimental mice models of insulin resistance. Pharmacol. Res. 2016;113(Pt. B):788–795.

29. Chou H., Wen L.L., Chan C.M., Lin C.C., Liu H.W., You H.L., Wei W.L., Tsai C.Y., Lu C.C., Hsieh C.J., Lu F.J., Chen N.J. L-Carnitine reduces reactive oxygen species/endoplasmic reticulum stress and maintains mitochondrial function during autophagy-mediated cell apoptosis in perfluorooctanesulfonate-treated renal tubular cells. Sci. Rep. 2022;12(1):4673.

30. Kauppila T.E.S., Kauppila J.H.K., Larsson N.G. Mammalian mitochondria and aging: An update. Cell Metab. 2017;25(1):57–71.

31. Pesce V., Fracasso F., Cassano P., Lezza A.M., Cantatore P., Gadaleta M.N. Acetyl-L-carnitine supplementation to old rats partially reverts the age-related mitochondrial decay of soleus muscle by activating peroxisome proliferator-activated receptor gamma coactivator-1alpha-dependent mitochondrial biogenesis. Rejuvenation Res. 2010;13(2–3):148–151.

32. Song Y., Li H., Shang R., Lu F., Gong Q., Liu J., Gong J., Li J., Wei C., Xu H. Carnitine acetyltransferase deficiency mediates mitochondrial dysfunction-induced cellular senescence. Aging Cell. 2023;22(11):e14000.

33. Goodpaster B.H., Sparks L.M. Metabolic flexibility in health and disease. Cell Metab. 2017;25(5):1027–1036.

34. Houten S.M., Violante S., Ventura F.V., Wanders R.J. The biochemistry and physiology of mitochondrial fatty acid β-oxidation and its genetic disorders. Annu. Rev. Physiol. 2016;78:23–44.

35. Sharma S., Aramburo A., Rafikov R., Sun X., Kumar S., Oishi P.E., Datar S.A., Raff G., Xoinis K., Kalkan G., Fratz S., Fineman J.R., Black S.M. L-carnitine preserves endothelial function in a lamb model of increased pulmonary blood flow. Pediatr. Res. 2013;74(1):39–47.

36. Звягина В.И., Шумаев К.Б., Бельских Э.С., Урясьев О.М., Ахмедова С.Р., Марсянова Ю.А., Шитикова А.М., Сучкова О.Н. Протективные эффекты L-аргинина на митохондрии эпидидимиса крыс при гипергомоцистеинемии, вызванной длительной метиониновой нагрузкой. Российский медико-биологический вестник имени академика И.П. Павлова. 2022;30(4):457–470.

37. Miguel-Carrasco J.L., Mate A., Monserrat M.T., Arias J.L., Aramburu O., Vázquez C.M. The role of inflammatory markers in the cardioprotective effect of L-carnitine in L-NAME-induced hypertension. Am. J. Hypertens. 2008;21(11):1231–1237.

38. Zvyagina V.I., Belskikh E.S. Comparative assessment of the functional activity of rat epididymal mitochondria in oxidative stress induced by hyperhomocysteinemia and L-NAME administration. J. Evol. Biochem. Physiol. 2022;58(5):364–379.

39. Звягина В.И., Бельских Э.С. Карнитина хлорид снижает степень выраженности экспериментальной гипергомоцистеинемии и способствует утилизации лактата митохондриальной фракцией эпидидимиса крыс. Биомед. хим. 2021;67(4):338–346.

40. Sharma B., Schmidt L., Nguyen C., Kiernan S., Dexter-Meldrum J., Kuschner Z., Ellis S., Bhatia N.D., Agriantonis G., Whittington J., Twelker K. The effect of L-carnitine on critical illnesses such as traumatic brain injury (TBI), acute kidney injury (AKI), and hyperammonemia (HA). Metabolites. 2024;14(7):363.

41. Badaro R., Barbosa J. D.V., de Araujo Neto C.A., Machado B.A.S., Soares M.B.P., de Senna V., Taddeo M., de Araújo L.T., Durkee S., Donninger R., Judge K., Saiyed Z. A randomized clinical trial to evaluate the efficacy of L-carnitine L-tartrate to modulate the effects of SARSCoV-2 infection. Front. Nutr. 2023;10:1134162.

42. Tama B., Fabara S.P., Zarrate D., Anas Sohail A. Effectiveness of propionyl-L-carnitine supplementation on exercise performance in intermittent claudication: A systematic review. Cureus. 2021;13(8):e17592.


Review

For citations:


Zvyagina V.I., Shitikova A.M., Atroshchenko M.M., Marsyanova Yu.A., Belskikh E.S., Melnikov D.O. Signaling role of selected mitochondrial metabolites in the regulation of mitochondrial homeostasis. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2025;80(3):137-146. (In Russ.) https://doi.org/10.55959/MSU0137-0952-16-80-3-7

Views: 11


ISSN 0137-0952 (Print)