Representatives of the genus Chlorella in a technogenic lake Otstoynik (Samara region, Russia) during the self-healing period
https://doi.org/10.55959/MSU0137-0952-16-80-3-1
Abstract
This article presents the results of a study of the species diversity of representatives of the clade Chlorella in the lake Otstoynik (Tolyatti, Samara region). This reservoir was used until 1996 for the disposal of nitrogen-tuck production waste but is currently at the stage of self-healing. In the course of the work, 15 strains of microalgae with Chlorella-like morphology were studied. Based on the results of molecular genetic analysis using the internal transcribed spacers ITS1 and ITS2, it was found that only 3 strains were true representatives of the genus Chlorella. Microalgae from the genera Brachionococcus, Lobosphaeropsis, Micractinium, and Meyerella were also found. In addition, 2 strains belonged to species that are still formally classified as Chlorella, but their actual taxonomic status needs to be clarified. This study has once again clearly shown that valid identification of Chlorella-like microalgae is not possible using only light microscopy methods. Methods of molecular genetic analysis must be used to study the true species’ richness.
Keywords
About the Author
E. S. KrivinaRussian Federation
5 Institutskaya St., Pushchino, Moscow Region, 142290
References
1. Babanazarova O.V. Northern expansion of Cylindrospermopsis raciborskii (Nostocales, Cyanoprokaryota) observed in shallow highly eutrophic Lake Nero (Russia). Int. J. Algae. 2015;17(2):131‒141.
2. Korneva L.G. Taxonomic composition and ecology of green algae (Chlorophyta and Streptophyta) in Shallow Weakly mineralized forest lakes. Int. J. Algae. 2012;14(4):331‒347.
3. Кривина Е.С., Тарасова Н.Г. Изменения таксономической структуры фитопланктона малых водоемов после прекращения техногенной эксплуатации. Учен. зап. Казан. ун-та. Сер. естеств. науки. 2018;160(2):292–307.
4. Blasio M., Balzano S. Fatty acids derivatives from eukaryotic microalgae, pathways and potential applications. Front. Microbiol. 2021;12:718933.
5. Sinetova M.A., Sidorov R.A., Starikov A.Y., Voronkov A.S., Medvedeva A.S., Krivova Z.V., Pakholkova M.S., Bachin D.V., Bedbenov V.S., Gabrielyan D.A., Zayadan B.K., Bolatkhan K., Los D.A. Assessment of biotechnological potential of cyanobacteria and microalgae strains from the IPPAS culture collection. Appl. Biochem. Microbiol. 2020;56(7):794–808.
6. Bock C., Krienitz L., Pröschold T. Taxonomic reassessment of the genus Chlorella (Trebouxiophyceae) using molecular signatures (barcodes), including description of seven new species. Fottea. 2011;11(2):293–312.
7. Karpagam R., Preeti R., Jawahar R.K., Saranya S., Ashokkumar B., Varalakshmi P. Fatty acid biosynthesis from a new isolate Meyerella sp. N4: molecular characterization, nutrient starvation, and fatty acid profiling for lipid enhancement. Energ. Fuel. 2015;29(1):143–149.
8. Suarez-Montes D., Borrell Y.J., Gonzalez J.M., Rico J.M. Isolation and identification of microalgal strains with potential as carotenoids producers from a municipal solid waste landfill. Sci. Total Environ. 2022;802:149755.
9. Копырина Л.И. Структура и видовой состав водорослей техногенных водоемов (бассейн р. Анабар, Северо-Западная Якутия). Совр. пробл. науки образов. 2016;4:207‒213.
10. Мустафаева М.И., Файзиева Ф.А. Преобладающие виды водорослей биологических прудов очистных сооружений. Нац. ассоц. уч. 2016;(4–1(20)):100‒101.
11. Spanner C., Darienko T., Biehler T., Sonntag B., Pröschold, T. Endosymbiotic green algae in Paramecium bursaria: a new isolation method and a simple diagnostic PCR approach for the identification. Diversity, 2020;12(6):240.
12. Guiry M.D., Guiry G.M. AlgaeBase. [Электронный ресурс]. World-wide electronic publication, National University of Ireland, Galway. 2025. URL: http://www.al-gaebase.org (дата обращения: 16.07.2025).
13. Johnson J.L., Fawley M.W., Fawley K.P. The diversity of Scenedesmus and Desmodesmus (Chlorophyceae) in Itasca State Park, Minnesota, USA. Phycologia. 2007;46(2):214–229.
14. Seibel P.N., Müller T., Dandekar T., Schultz J., Wolf M. 4SALE: a tool for synchronous RNA sequence and secondary structure alignment and editing. BMC Bioinform. 2006;7(1):498.
15. Coleman A.W. Nuclear rRNA transcript processing versus internal transcribed spacer secondary structure. Trends Genet. 2015;31(3):157–163.
16. Bock C., Proschold T., Krienitz L. Two new Dictyosphaerium-morphotype lineages of the Chlorellaceae (Trebouxiophyceae): Heynigia gen. nov. and Hindakia gen. nov. Eur. J. Phycol. 2010;45(3):267–277.
17. Hoshina R., Nakada T. Carolibrandtia nom. nov. as a replacement name for Brandtia Hoshina (Chlorellaceae, Trebouxiophyceae). Phycol. Res. 2018;66(1):82–83.
18. Krivina E.S., Sinetova M., Savchenko T., Degtyaryov E., Tebina E., Temraleeva, A. Micractinium lacustre and M. thermotolerans spp. nov. (Trebouxiophyceae, Chlorophyta): taxonomy, temperature-dependent growth, photosynthetic characteristics and fatty acid composition. Algal Res. 2023a;71(2):103042.
19. Krivina E.S., Boldina O.N., Bukin Y.S., Bykova S.V., Temraleeva, A.D. Species delimitation polyphasic approach reveals Meyerella similis sp. nov.: a new species of ‘small green balls” within the Chlorella-clade (Trebouxiophyceae, Chlorophyta). Org. Divers. Evol. 2023;23(1):25–40.
20. Minh B.Q., Schmidt H.A., Chernomor, O., Schrempf D., Woodhams M.D., von Haeseler A., Lanfear R. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020;37(5):1530–1534.
21. Barido-Sottani J., Boskova V., Du Plessis L., Kuhnert D., Magnus C., Mitov V., Muller N.F., PecErska J., Rasmussen D.A., Zhan, C., Rasmussen D.A., Zhang C., Drummond A.J., Heath T.A., Pybus O.G., Vaughan T.G., Stadler T. Taming the BEAST—A community teaching material resource for BEAST2. Syst. Biol. 2018;67(1):170–174.
22. Tamura K., Stecher G., Kumar S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021;38(7):3022–3027.
23. Krivina E., Portnov A., Temraleeva A. A description of Aliichlorella ignota gen. et sp. nov. and a comparison of the efficiency of species delimitation methods in the Chlorella-clade (Trebouxiophyceae, Chlorophyta). Phycol. Res. 2024;72(3):180‒190.
24. Krivina E.S., Temraleeva A.D. Identification problems and cryptic diversity of Chlorella-clade microalgae (Chlorophyta). Microbiology. 2020;89(6):720‒732.
25. Chae H., Kim E.J., Kim H.S., Choi H.-G., Kim S., Kim J.H. Morphology and phylogenetic relationships of two Antarctic strains within the genera Carolibrandtia and Chlorella (Chlorellaceae, Trebouxiophyceae). Algae. 2023;38(4):241–252.
26. Pröschold T., Darienko T., Silva P. C., Reisser W., Krienitz L. The systematics of “Zoochlorella” revisited employing an integrative approach. Environ. Microbiol. 2011;13(2):350–364.
27. Андеева В.М. Почвенные и аэрофильные зеленые водоросли (Chlorophyta: Tetrasporales, Chlorococcales, Chlorosarcinales). СПб.: Наука; 1998. 351 с.
28. Krivina E.S., Savchenko T.V., Tebina E.M., Shatilovich A.V., Temraleeva A.D. Morphology, phylogeny and fatty acid profiles of Meyerella similis from freshwater ponds and Meyerella krienitzii sp. nov. from soil (Trebouxiophyceae, Chlorophyta). J. Appl. Phycol. 2023;35(5):2295–2307.
29. Luo W., Pflugmacher S., Pröschold T., Walz N., Krienitz L. Genotype versus phenotype variability in Chlorella and Micractinium (Chlorophyta, Trebouxiophyceae). Protist. 2006;157(3):315–333.
30. Романенко В.Д. Основы гидроэкологии. К.: Генеза; 2004. 664 с.
Review
For citations:
Krivina E.S. Representatives of the genus Chlorella in a technogenic lake Otstoynik (Samara region, Russia) during the self-healing period. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2025;80(3):147-155. (In Russ.) https://doi.org/10.55959/MSU0137-0952-16-80-3-1


























