Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

Estimation of heterogeneity of photosystem II complexes of Chlorella vulgaris algae cells under nitrogen starvation using a mathematical model

https://doi.org/10.55959/MSU0137-0952-16-80-3-6

Abstract

The study of microalgae cell responses to stress factors such as mineral nutrient deficiency is an important ecological task. Changes in the photosynthetic apparatus are reflected in the kinetics of experimentally measured chlorophyll fluorescence induction curves. Various mathematical methods are developed to analyze changes in the shape of curves, allowing rapid analysis of a large number of curves. The paper demonstrates the use of a simple mathematical model of photosystem II (PSII) to assess changes in the PSII parameters of a Chlorella vulgaris microalgae cell culture growing under nitrogen deficiency in the medium. The model describes transitions between three key PSII states that differ in the oxidation state of its components. The mathematical model revealed an increase in the proportion of reaction centers containing smaller antennae, as well as an increase in the proportion of inactive oxygen-releasing complexes.

About the Authors

R. N. Chervitsov
Department of Biophysics, School of Biology, Lomonosov Moscow State University
Russian Federation

1–24 Leninskie gory, Moscow, 119234



S. S. Khruschev
Department of Biophysics, School of Biology, Lomonosov Moscow State University
Russian Federation

1–24 Leninskie gory, Moscow, 119234



P. V. Fursova
Department of Biophysics, School of Biology, Lomonosov Moscow State University
Russian Federation

1–24 Leninskie gory, Moscow, 119234



T. Yu. Plyusnina
Department of Biophysics, School of Biology, Lomonosov Moscow State University
Russian Federation

1–24 Leninskie gory, Moscow, 119234



References

1. Safi C., Zebib B., Merah O., Pontalier P.-Y., Vaca-Garcia C. Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renew. Sustain. Energy Rev. 2014;35:265–278.

2. Ru I.T.K., Sung Y.Y., Jusoh M., Wahid M.E.A., Nagappan T. Chlorella vulgaris: a perspective on its potential for combining high biomass with high value bioproducts. Appl. Phycol. 2020;1(1):2–11.

3. Cetner M. D., Kalaji H. M., Goltsev V., Aleksandrov V., Kowalczyk K., Borucki W., Jajoo A. Effects of nitrogen-deficiency on efficiency of light-harvesting apparatus in radish. Plant Physiol. Biochem. 2017;119:81–92.

4. Chen, L.-H., Xu, M., Cheng, Z., Yang, L.-T. Effects of nitrogen deficiency on the photosynthesis, chlorophyll a fluorescence, antioxidant system, and sulfur compounds in Oryza sativa. Int. J. Mol. Sci. 2024;25(19):10409.

5. Karukstis K.K. Chlorophyll fluorescence analysis of photosystem II reaction center heterogeneity. J. Photochem. Photobiol., B. 1992;15(1–2):63–74.

6. Terentyev V.V., Shukshina A.K., Ashikhmin A.A., Tikhonov K.G., Shitov A.V. The main structural and functional characteristics of photosystem-II-enriched membranes isolated from wild type and cia3 mutant Chlamydomonas reinhardtii. Life. 2020;10(5):63.

7. Antal T., Konyukhov I., Volgusheva A., Plyusnina T., Khruschev S., Kukarskikh G., Goryachev S., Rubin A. Chlorophyll fluorescence induction and relaxation system for the continuous monitoring of photosynthetic capacity in photobioreactors. Physiol. Plant. 2019;165(3):476–486.

8. Melis A. Dynamics of photosynthetic membrane composition and function. Biochim. Biophys. Acta Bioenergetics. 1991;1058(2):87–106.

9. Melis A, Homann P. Heterogeneity of the photochemical centers in system II of chloroplasts. Photochem. Photobiol. 1976;23(5):343–350.

10. Lazar D., Tomek P., Ilik P., Nauš J. Determination of the antenna heterogeneity of photosystem II by direct simultaneous fitting of several fluorescence rise curves measured with DCMU at different light intensities. Photosyn. Res. 2001;68(3):247–257.

11. Plyusnina T.Yu., Khruschev S.S., Degtereva N.S., Voronova E.N., Volgusheva A.A., Riznichenko G.Yu., Rubin A.B. Three-state mathematical model for the assessment of DCMU-treated photosystem II heterogeneity. Photosynth. Res. 2024;159:303–320.

12. Дегтерева Н.С., Плюснина Т.Ю., Хрущев С.С., Червицов Р.Н., Воронова Е.Н., Яковлева О.В., Антал Т.К., Ризниченко Г.Ю., Рубин А.Б. Оценка гетерогенности антенны и активности кислород-выделяющего комплекса фотосистемы II математическими методами. Биофизика. 2024;69(3):486–497.

13. Беляева Н.Е., Пащенко В.З., Ренгер Г., Ризниченко Г.Ю., Рубин А.Б. Использование модели фотосистемы II для анализа индукционной кривой флуоресценции, вызванной насыщающим световым импульсом, во временном диапазоне 100 нс – 10 с. Биофизика. 2006;51(6):976-990.

14. Lazar D., Jablonsky J. On the approaches applied in formulation of a kinetic model of photosystem II: Different approaches lead to different simulations of the chlorophyll a fluorescence transients. J. Theor. Biol. 2009;257(2):260–269.

15. Беляева Н.Е., Булычев А.А., Ризниченко Г.Ю., Рубин А.Б. Модель фотосистемы II для анализа нарастания индукционной кривой флуоресценции листьев высших растений. Биофизика. 2011;56(3):489–505.

16. Vredenberg W., Prášil O. Modeling of chlorophyll a fluorescence kinetics in plant cells: derivation of a descriptive algorithm. Photosynthesis in silico. Advances in Photosynthesis and Respiration, vol 29. Eds. A. Laisk, L. Nedbal, Govindjee. Dordrecht: Springer; 2009:125–149.

17. Vredenberg W., Prášil O. On the polyphasic quenching kinetics of chlorophyll a fluorescence in algae after light pulses of variable length. Photosynth. Res. 2013;117(1–3):321–337.

18. Schatz G.H., Brock H., Holzwarth A.R. Picosecond kinetics of fluorescence and absorbance changes in photosystem II particles excited at low photon density. Proc. Natl. Acad. Sci. U.S.A. 1987;84(23):8414–8418.

19. Roelofs T.A., Lee C.-H., Holzwarth A.R. Global target analysis of picosecond chlorophyll fluorescence kinetics from pea chloroplasts. A new approach to the characterization of the primary processes in photosystem II αand β-units. Biophys. J. 1992;61(5):1147–1163.

20. Plyusnina T.Yu., Khruschev S.S., Degtereva N.S., Konyukhov I.V., Solovchenko A.E., Kouzmanova M., Goltsev V.N., Riznichenko G.Yu., Rubin A.B. Gradual changes in the photosynthetic apparatus triggered by nitrogen depletion during microalgae cultivation in photobioreactor. Photosynthetica. 2020;58(SI):258–266.

21. Погосян С.И., Гальчук С.В., Казимирко Ю.В., Конюхов И.В., Рубин А.Б. Применение флуориметра «Мега-25» для определения количества фитопланктона и оценки состояния его фотосинтетического аппарата. Вода: химия и экология. 2009;6(12):34–40.

22. Gizzatkulov N.M., Goryanin I.I., Metelkin E.A., Mogilevskaya E.A., Peskov K.V., Demin O.V. DBSolve Optimum: a software package for kinetic modeling which allows dynamic visualization of simulation results. BMC Syst. Biol. 2010;4(1):109.

23. LMFIT: Non-linear least-squares minimization and curve fitting for Python. [Электронный ресурс]. Режим доступа: https://lmfit.github.io/lmfit-py/intro.html (дата обращения: 15.04.2025)


Review

For citations:


Chervitsov R.N., Khruschev S.S., Fursova P.V., Plyusnina T.Yu. Estimation of heterogeneity of photosystem II complexes of Chlorella vulgaris algae cells under nitrogen starvation using a mathematical model. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2025;80(3):190-196. (In Russ.) https://doi.org/10.55959/MSU0137-0952-16-80-3-6

Views: 8


ISSN 0137-0952 (Print)