Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

The comparative analysis of motor and spatial learning dynamics in animals survived prenatal hypoxia

https://doi.org/10.55959/MSU0137-0952-16-80-3-9

Abstract

The data of modern neurobiology indicates a critical dependence of the nervous system formation upon the conditions of intrauterine development. Pregnancy, childbirth and the early postnatal period are of key importance for normal maturation of the nervous system. The developing fetus is especially vulnerable to the effects of adverse external and internal factors in periods of brain and neuronal structures morphological differentiation, during childbirth and the transition to independent breathing. Fetal and/or newborn hypoxia is considered one of the main causes of disorders in brain development, manifested later in form of cognitive impairments, problems with learning, memory and attention, social interactions, movements and emotions. The aim of the present study was to investigate the effect of prenatal hypoxia, suffered in periods critical for brain development and maturation, on the ability of white rats to motor and spatial learning. It was shown that males, survived acute late gestational hypoxia, turned out to be more sensitive to its effects, demonstrating at the age of one month both a deficit in learning, reproduction and maintainance of motor skills, and a failure in solving cognitive task in T-shaped maze. At the same time acute hypoxia of the early organogenesis period had practically no effect on the ability of peripubertal animals to motor and spatial learning. Therefore, comprehensive testing allows to assess the effects of hypoxic brain damage more completely, which is important for early diagnosis and the development of rehabilitation programs.

About the Authors

A. V. Graf
Faculty of Biology, Lomonosov Moscow State University
Russian Federation

1–12 Leninskie gory, 119234 Moscow



M. V. Maslova
Faculty of Biology, Lomonosov Moscow State University
Russian Federation

1–12 Leninskie gory, 119234 Moscow



A. S. Maklakova
Faculty of Biology, Lomonosov Moscow State University
Russian Federation

1–12 Leninskie gory, 119234 Moscow



References

1. Sidorova I.S., Nikitina N.A., Unanyan A.L., Ageev M.B. Development of the human fetal brain and the influence of prenatal damaging factors on the main stages of neurogenesis. Russian Bulletin of Obstetrician-Ginekologist. 2022;22(1):35–44.

2. Kostovic I., Judas M. Embryonic and fetal development of the human cerebral cortex. Brain Mapping. 2015;2:167–175.

3. Piešová M., Mach M. Impact of perinatal hypoxia on the developing brain. Physiol. Res. 2020;69(2):199–213.

4. Orzeł A., Unrug-Bielawska K., Filipecka-Tyczka D., Berbeka K., Zeber-Lubecka N., Zielińska M., Kajdy A. Molecular pathways of altered brain development in fetuses exposed to hypoxia. Int. J. Mol. Sci. 2023;24(12):10401.

5. Mabry S., Wilson EN., Bradshaw JL., Gardner JJ., Fadeyibi O., Vera E Jr., Osikoya O., Cushen SC., Karamichos D., Goulopoulou S., Cunningham RL. Sex and age differences in social and cognitive function in offspring exposed to late gestational hypoxia. Biol. Sex Differ. 2023;14(1):81.

6. Graf A., Trofimova L., Ksenofontov A., Baratova L., Bunik V. Hypoxic adaptation of mitochondrial metabolism in rat cerebellum decreases in pregnancy. Cells. 2020;9(1):139.

7. Shiotsuki H., Yoshimi K., Shimo Y., Funayama M., Takamatsu Y., Ikeda K., Takahashi R., Kitazawa S., Hattoriet N. A rotarod test for evaluation of motor skill learning. J. Neurosci. Methods. 2010;189(2):180–185.

8. Howard L.M., Khalifeh H. Perinatal mental health: a review of progress and challenges. World Psychiatry. 2020;19(3):313–327.

9. Gennaro S., Melnyk B.M., Szalacha L.A, Gibeau A.M., Hoying J., O’Connor C.M., Cooper A.R., Aviles M.M. Effects of two group prenatal care interventions on mental health: an RCT. Am. J. Prev. Med. 2024;66(5):797–808.

10. Lautarescu A., Craig M.C., Glover V. Prenatal stress: Effects on fetal and child brain development. Int. Rev. Neurobiol. 2020;150:17–40.

11. Wang B., Zeng H., Liu J., Sun M. Effects of prenatal hypoxia on nervous system development and related diseases. Front. Neurosci. 2021;15:755554.

12. Lu G., Rili G., Shuang M. Impact of hypoxia on the hippocampus: a review. Medicine (Baltimore). 2025;104(12):e41479.

13. Graf A.V., Maslova M.V., Artiukhov A.V., Ksenofontov A.L., Aleshin V.A., Bunik V.I. Acute prenatal hypoxia in rats affects physiology and brain metabolism in the offspring, dependent on sex and gestational age. Int. J. Mol. Sci. 2022;23(5):2579.

14. Stratilov V., Potapova S., Safarova D., Tyulkova E., Vetrovoy O. Prenatal hypoxia triggers a glucocorticoid-associated depressive-like phenotype in adult rats, accompanied by reduced anxiety in response to stress. Int. J. Mol. Sci. 2024;25(11):5902.

15. Monteleone M.C., Pallarés M.E., Billi S.C., Antonelli M.C., Brocco M.A. In vivo and in vitro neuronal plasticity modulation by epigenetic regulators. J. Mol. Neurosci. 2018;65(3):301–311.

16. Xu H., Liu Y.-Y., Li L.-S., Liu Y.-S. Sirtuins at the crossroads between mitochondrial quality control and neurodegenerative diseases: structure, regulation, modifications, and modulators. Aging Dis. 2023;14(3):794–824.

17. McCarthy M.M., Nugent B.M., Lenz K.M. Neuroimmunology and neuroepigenetics in the establishment of sex differences in the brain. Nat. Rev. Neurosci. 2017;18(8):471–484.

18. Bale T.L., Epperson C.N. Sex differences and stress across the lifespan. Nat. Neurosci. 2015;18(10):1413–1420.

19. Bland ST, Schmid MJ, Der-Avakian A, Watkins LR, Spencer RL, Maier SF. Expression of c-fos and BDNF mRNA in subregions of the prefrontal cortex of male and female rats after acute uncontrollable stress. Brain Res. 2005;1051(1–2):90–99.

20. Hayley S., Du L., Litteljohn D., Palkovits M., Faludi G., Merali Z., Poulter M.O., Anisman H. Gender and brain regions specific differences in brain derived neurotrophic factor protein levels of depressed individuals who died through suicide. Neurosci. Lett. 2015;600:12–16.

21. Spencer-Segal J.L., Tsuda M.C., Mattei L., Waters E.M., Romeo R.D., Milner T.A., McEwen B.S., Ogawa S. Estradiol acts via estrogen receptors alpha and beta on pathways important for synaptic plasticity in the mouse hippocampal formation. Neuroscience. 2012;202:131–146.

22. Hyer M.M., Phillips L.L., Neigh G.N. Sex differences in synaptic plasticity: hormones and beyond. Front. Mol. Neurosci. 2018;11:266.

23. Li G., Liu J., Guan Y., Ji X. The role of hypoxia in stem cell regulation of the central nervous system: From embryonic development to adult proliferation. CNS Neurosci. Ther. 2021;27(12):1446–1457.

24. Herculano-Houzel S. Numbers of neurons as biological correlates of cognitive capability. Curr. Opin. Behav. Sci. 2017;16:1–7.

25. Spritzer M.D., Roy E.A. Testosterone and adult neurogenesis. Biomolecules. 2020;10(2):225.


Review

For citations:


Graf A.V., Maslova M.V., Maklakova A.S. The comparative analysis of motor and spatial learning dynamics in animals survived prenatal hypoxia. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2025;80(3):197-205. (In Russ.) https://doi.org/10.55959/MSU0137-0952-16-80-3-9

Views: 100

JATS XML

ISSN 0137-0952 (Print)