Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

EXPERIMENTAL MODEL OF AUTISTIC DISORDER — VALPROATE INDUCED FETAL SYNDROME

Abstract

High doses of valproic acid repress histone deacetylases and modify functioning of many genes. After its prenatal injection in offspring of laboratory animals the fetal valproate syndrome occurs considered as a model of autism spectrum disorders. Our review describes features of brain condition and activity during fetal valproate syndrome at different levels, from molecular and cellular to behavioral. Special attention is paid to the social interactions, the most relevant manifestations of autistic disorder. Both literature analysis and results of the authors‘ research are presented.

About the Authors

A. V. Malyshev
биологическоий факультет МГУ
Russian Federation


K. R. Abbasova
биологический факультет МГУ
Russian Federation


O. A. Averina
ООО “НИИ Митоинженерии МГУ”
Russian Federation


L. N. Solovieva
биоло­гический факультет МГУ
Russian Federation


V. R. Gedzun
биологический факультет МГУ
Russian Federation


M. V. Gulyaev
Учебно­-научный межфакультетский и междисциплинарный центр магнитной томографии и спектроскопии (ЦМТС) МГУ
Russian Federation


V. A. Dubynin
биологический факультет МГУ
Russian Federation


References

1. Myers S.M., Johnson C.P. Management of children with autism spectrum disorders // Pediatrics. 2007. Vol. 120. N 5. P. 1162—1182.

2. Rapin I., Tuchman R.F. Autism: definition, neurobiology, screening, diagnosis // Pediatr. Clin. North. Am. 2008. Vol. 55. N 5. P. 1129—1146.

3. Hellings J.A., Nickel E.J., Weckbaugh M., McCarter K., Mosier M. The overt aggression scale for rating aggression in outpatient youth with autistic disorder: preliminary findings // J. Neuropsychiatry Clin. Neurosci. 2005. Vol. 17. N 1. P. 29—35.

4. Christensen J. Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism // J. Am. Med. Assoc. 2013. Vol. 309. N 16. P. 1696—1703.

5. Rodier P.M., Ingram J.L., Tisdale B., Croog V.J. Linking etiologies in humans and animal models: studies of autism // Reprod. Toxicol. 1997. Vol. 11. N 2—3. P. 417—422.

6. Schneider T., Przewlocki R. Behavioral alterations in rats prenatally exposed to valproic acid: animal model of autism // Neuropsychopharmacology. 2005. Vol. 30. N 1. P. 80—89.

7. Chen P.S., Wang C.C., Bortner C.D., Peng G.S., Wu X., Pang H., Lu R.B., Gean P.W., Chuang D.M., Hong J.S. Valproic acid and other histone deacetylase inhibitors induce microglial apoptosis and attenuate lipopolysaccharide­induced dopaminergic neurotoxicity // Neuroscience. 2007. Vol. 149. N 1. P. 203—212.

8. Roullet F.I., Wollaston L., Decatanzaro D., Foster J.A. Behavioral and molecular changes in the mouse in response to prenatal exposure to the anti­epileptic drug valproic acid // Neuroscience. 2010. Vol. 170. N 2.P. 514—522.

9. Go H.S., Kim K.C., Choi C.S., Jeon S.J., Kwon K.J., Han S.H., Lee J., Cheong J.H., Ryu J.H., Kim C.H., Ko K.H., Shin C.Y. Prenatal exposure to valproic acid increases the neural progenitor cell pool and induces macrocephaly in rat brain via a mechanism involving the GSK­3/­catenin pathway // Neuropharmacology. 2012. Vol. 63. N 6. P. 1028—1041.

10. Chomiak T., Turner N., Hu B. What we have learned about autism spectrum disorder from valproic acid // Patholog. Res. Int. 2013. Vol. 2013. P. 1—8.

11. Bescoby C.N., Forster P., Bates G. Fetal valproate syndrome and autism: additional evidence of an association // Dev. Med. Child. Neurol. 2001. Vol. 43. N 12. P. 847—857.

12. Малышев А.В. Экспериментальное моделиро­вание расстройств аутистического спектра и депрессии; поиск путей пептидергической коррекции: Автореф. дис. ... канд. биол. наук. М., 2014. 25 с.

13. Favre M.R., Barkat T.R., Lamendola D., Khazen G., Markram H., Markram K. General developmental health in the VPA­rat model of autism // Front. Behav. Neurosci. 2013. Vol. 7. Art. 88. P. 1—11.

14. Narita M., Oyabu A., Imura Y., Kamada B., Yokoyama T., Tano K., Uchida A., Narita N. Nonexploratory movement and behavioral alterations in a thalidomide or valproic acid­induced autism model rat // Neurosci. Res. 2010. Vol. 66. N 1. P. 2—6.

15. Kerr D.M., Downey L., Conboy M., Finn D.P., Roche M. Alterations in the endocannabinoid system in the rat valproic acid model of autism // Behav. Brain Res. 2013. Vol. 249. P. 124—132.

16. Matson J.L., Williams L.W. Depression and mood disorders among persons with autism spectrum disorders // Res. Dev. Disabil. 2014. Vol. 35. N 9. P. 2003—2007.

17. D’Adamo M., Moro F., Imbrici P., Martino D., Roscini M., Santorelli F., Sicca F., Pessia M. The emerging role of the inwardly rectifying K+ channels in autism spectrum disorders and epilepsy // Malta Medical Journal. 2011. Vol. 23. N 3. P. 1—8.

18. Malyshev A.V., Razumkina E.V., Dubynin V.A., Myasoedov N.F. Semax corrects brain dysfunction caused by prenatal introduction of valproic acid // Dokl. Biol. Sci. 2013. Vol. 450. N 1. P. 126—129.

19. Stovolosov I.S., Dubynin V.A., Kamensky A.A. Role of the brain dopaminergic and opioid system in the regulation of “child’s” (maternal bonding) behavior of newborn albino rats // Bull. Exp. Biol. Med. 2011. Vol. 150. N 3. P. 281—285.

20. Papaioannou A., Dafni U., Alikaridis F., Bolaris S., Stylianopoulou F. Effects of neonatal handling on basal and stress­induced monoamine levels in the male and female rat brain // Neuroscience. 2002. Vol. 114. N 1. P. 195—206.

21. Miyagi J., Oshibuchi H., Kasai A., Inada K., Ishigooka J. Valproic acid inhibits excess dopamine release in response to a fear­conditioned stimulus in the basolateral complex of the amygdala of methamphetamine­sensitized rats // Eur. J. Pharmacol. 2014. Vol. 730. P. 20—25.

22. Lee S., Jeong J., Park Y.U., Kwak Y., Lee S.A., Lee H., Son H., Park S.K. Valproate alters dopamine signaling in association with induction of Par­4 protein expression // PLoS One. 2012. Vol. 7. N 9. P. 1—8.

23. Carlson G.C. Glutamate receptor dysfunction and drug targets across models of autism spectrum disorders // Pharmacol. Biochem. Behav. 2012. Vol. 100. N 4. P. 850—854.

24. Spooren W., Lindemann L., Ghosh A., Santarelli L. Synapse dysfunction in autism: a molecular medicine approach to drug discovery in neurodevelopmental disorders // Trends Pharmacol. Sci. 2012. Vol. 33. N 12. P. 669—684.

25. Oyabu A., Narita M., Tashiro Y. The effects of prenatal exposure to valproic acid on the initial development of serotonergic neurons // Int. J. Dev. Neurosci. 2013. Vol. 31. N 3. P. 202—208.

26. Kinast K., Peeters D., Kolk S.M., Schubert D., Homberg J.R. Genetic and pharmacological manipulations of the serotonergic system in early life: neurodevelopmental underpinnings of autism­related behavior // Front. Cell. Neurosci. 2013. Vol. 7. N 72. P. 1—17.

27. Хачева К.К., Гедзун В.Р., Рогозинская Э.Я., Та­наева К.К. Роль ­казоморфина­7 в коррекции нару­шений материнского поведения крыс, вызванных пре­натальным воздействием вальпроата натрия // Тезисы докладов Международной научной конференции студен­тов, аспирантов и молодых ученых “Ломоносов­2014”. М.: МАКС Пресс, 2014. С. 331.

28. Kirino E. Efficacy and tolerability of pharmacotherapy options for the treatment of irritability in autistic children // Clin. Med. Insights Pediatr. 2014. Vol. 8. P. 17—30.

29. Almeida L.E., Roby C.D., Krueger B.K. Increased BDNF expression in fetal brain in the valproic acid model of autism // Mol. Cell. Neurosci. 2014. Vol. 59. P. 57—62.

30. Dolotov O.V., Karpenko E.A., Inozemtseva L.S., Seredenina T.S., Levitskaya N.G., Rozyczka J., Dubynina E.V., Novosadova E.V., Andreeva L.A., Alfeeva L.Yu., Kamensky A.A., Grivennikov I.A., Myasoedov N.F., Engele J. Semax, an analog of ACTH(4—10) with cognitive effects, regulates BDNF and trkB expression in the rat hippocampus // Brain Res. 2006. Vol. 1117. N. 1. P. 54—60.


Review

For citations:


Malyshev A.V., Abbasova K.R., Averina O.A., Solovieva L.N., Gedzun V.R., Gulyaev M.V., Dubynin V.A. EXPERIMENTAL MODEL OF AUTISTIC DISORDER — VALPROATE INDUCED FETAL SYNDROME. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2015;(3):8-12. (In Russ.)

Views: 886


ISSN 0137-0952 (Print)